检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学的实践与认识》2015年第17期48-55,共8页Mathematics in Practice and Theory
基 金:教育部人文社科研究项目西部地区物流业带动现代服务业的效应及动力机制(10XJA790009)
摘 要:现有的基于遗传算法的K-means聚类算法,利用遗传算法的全局优化性提高了K-means算法的寻优能力,收敛速度却过慢.为了解决上述问题,提出基于云自适应遗传算法的K-means聚类算法,利用云模型云滴的随机性和稳定趋向性设计遗传算法的交叉和变异概率,并在进化过程中引入K均值算子,以克服算法收敛速度过慢的问题.实验比较表明,算法具有较好的全局优化性,且收敛速度较快,提高了聚类算法解决物流管理中数据聚类工作的能力.The existing K-means clustering algorithms based on genetic algorithm effectively improve the optimization capacity of K-means by using the global optimization function of the genetic algorithm, however, the convergence speed of them is quite slow. To solve this problem, we propose a K-means clustering algorithm based on the cloud adaptive genetic algorithm, which designs the probability of crossover and mutation of the genetic algorithm by using the randomness and stable tendency of cloud droplet in the cloud model, at the same time, K- means operator is introduced in evolution process. The comparison results of the experiments show that this algorithm, with better global optimization capacity and faster convergence speed, improves the working ability of data clustering by using clustering algorithm in solving logistic management.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28