检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阮羚[1] 李成华[2] 宿磊[3] 谢齐家[1] 吴玉佳 张新访[4]
机构地区:[1]国家电网公司高压电气设备现场试验技术重点实验室国网湖北省电力公司电力科学研究院,武汉430077 [2]中南民族大学智能无线通信湖北省重点实验室,武汉430074 [3]国网湖北省电力公司电力科学研究院,武汉430077 [4]华中科技大学计算机科学与技术学院,武汉430074
出 处:《电工技术学报》2015年第18期223-228,共6页Transactions of China Electrotechnical Society
摘 要:提出了一种基于奇异值分解的变压器局部放电模式识别方法。通过搭建人工缺陷实验环境并采集样本数据,计算每个样本的统计特征参数,构成实验数据的样本矩阵。对样本矩阵进行奇异值分解,判断保留矩阵的特征是否明显,确定最佳保留矩阵的阶数,从而得到降维后的类型特征空间描述矩阵和类中心描述向量组。对现场采集的样本数据进行计算得到待分类的样本向量,并用类型特征空间描述矩阵进行线性变换,然后计算变换后的向量与类中心向量组中每个向量的距离,从而得到分类的判断结果。该算法简单而且高效,能够实现局部放电检测中各种放电信号的有效区分,局部放电模式识别召回率约为91.3%。A pattern recognition method based on singular value decomposition(SVD) for partial discharge in transformers is proposed. By setting up an experimental environment with artificial defects and calculating the statistical parameters from the data obtained from each sample, the sample matrix is constructed. SVD is then carried out for the sample matrix. After dimensional reduction by decomposing the matrix, the best order for the remained matrix is judged by the singular value. Then, the low-dimensional description matrix of feature space and the class-center vectors are obtained. The classified sample vector which is acquired on Site is formulated by linear transforms of the description matrix. The result of classification is gotten by calculating the distances between the transformed vector and the class-center vector. The proposed method is simple and efficient. It has the ability to recognize effectively various signals of partial discharge. The experiments show that the recall rate of partial discharge is about 91.3%.
分 类 号:TM83[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222