Instability of lithium bis(fluorosulfonyl)imide(LiFSI)–potassium bis(fluorosulfonyl)imide(KFSI) system with LiCoO_2 at high voltage  

Instability of lithium bis(fluorosulfonyl)imide(LiFSI)–potassium bis(fluorosulfonyl)imide(KFSI) system with LiCoO_2 at high voltage

在线阅读下载全文

作  者:张舒 李文俊 凌仕刚 李泓 周志彬 陈立泉 

机构地区:[1]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences [2]Key Laboratory for Large-Format Battery Materials and System (Ministry of Education)School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology

出  处:《Chinese Physics B》2015年第7期567-574,共8页中国物理B(英文版)

基  金:Project supported by the Beijing S&T Project,China(Grant No.Z13111000340000);the National Basic Research Program of China(Grant No.2012CB932900);the National Natural Science Foundation of China(Grants Nos.51325206 and 51421002)

摘  要:The cycling performance, impedance variation, and cathode surface evolution of the Li/LiCoO2 cell using Li FSI–KFSI molten salt electrolyte are reported. It is found that this battery shows poor cycling performance, with capacity retention of only about 67% after 20 cycles. It is essential to understand the origin of the instability. It is noticed that the polarization voltage and the impedance of the cell both increase slowly upon cycling. The structure and the properties of the pristine and the cycled LiCoO2 cathodes are investigated by x-ray diffraction(XRD), scanning electron microscopy(SEM), Raman spectroscopy, x-ray photoelectron spectroscopy(XPS), and transmission electron microscopy(TEM). It is found that the LiCoO2 particles are corroded by this molten salt electrolyte, and the decomposition by-product covers the surface of the LiCoO2 cathode after 20 cycles. Therefore, the surface side reaction explains the instability of the molten salt electrolyte with LiCoO2.The cycling performance, impedance variation, and cathode surface evolution of the Li/LiCoO2 cell using Li FSI–KFSI molten salt electrolyte are reported. It is found that this battery shows poor cycling performance, with capacity retention of only about 67% after 20 cycles. It is essential to understand the origin of the instability. It is noticed that the polarization voltage and the impedance of the cell both increase slowly upon cycling. The structure and the properties of the pristine and the cycled LiCoO2 cathodes are investigated by x-ray diffraction(XRD), scanning electron microscopy(SEM), Raman spectroscopy, x-ray photoelectron spectroscopy(XPS), and transmission electron microscopy(TEM). It is found that the LiCoO2 particles are corroded by this molten salt electrolyte, and the decomposition by-product covers the surface of the LiCoO2 cathode after 20 cycles. Therefore, the surface side reaction explains the instability of the molten salt electrolyte with LiCoO2.

关 键 词:lithium ion battery molten salt electrolyte lithium bis(fluorosulfonyl)imide potassium bis(fluorosulfonyl)imide 

分 类 号:TM912[电气工程—电力电子与电力传动] X383[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象