检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中师范大学计算机学院,湖北武汉430079
出 处:《计算机工程与科学》2015年第10期1952-1958,共7页Computer Engineering & Science
基 金:国家自然科学基金资助项目(61003192)
摘 要:目前许多观点挖掘方法挖掘粒度过大,导致反馈信息不足。为解决该问题,对标准LDA模型进行改进,提出主题情感联合最大熵LDA模型进行细粒度观点挖掘。首先,考虑到词的位置和语义信息,在传统LDA模型中加入最大熵组件来区分背景词、特征词和观点词,并对特征词和观点词进行局部和全局的划分;其次,在主题层和单词层之间加入情感层,实现词语级别的细粒度情感分析,并引入情感转移变量来处理情感从属关系,同时获取整篇评论和每个主题的情感极性,实验验证了所提模型和理论的有效性。Many current methods of opinion mining are coarse-grained, which are practically problematic due to insufficient feedback information. To address these problems, we propose a novel topic and sentiment joint maximum entropy LDA model in this paper for fine-grained opinion mining. Considering semantic and location information of words, a maximum entropy component is first added to the traditional LDA model to distinguish background words, aspect words and opinion words. Both the local extraction and global extraction of these words are further realized. Secondly, a sentiment layer is inserted between a topic layer and a word layer to perform fine-grained opinion mining on word or phrase level. Transition variable is introduced to deal with sentiment dependency. The sentiment polarity of the whole review and each topic are simultaneously acquired. Experimental results demonstrate the validity of the proposed model and theory.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222