检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京化工大学,北京100029
出 处:《信息与控制》2015年第4期449-454,共6页Information and Control
基 金:中央高校基本科研业务费专项基金资助项目(YS1404);国家质检总局科技计划资助项目(2015IK048)
摘 要:选择包含系统的约束条件和梯度信息的最优性条件(necessary conditions of optimality,NCO)作为控制系统的实现目标,可以从结构设计角度有效地提高生产过程的经济性能.针对NCO在线不易直接测量、离线估计不及时和不准确等问题,提出了一类基于高斯过程的NCO建模、预测及控制方法.通过生产过程实时数据在线动态更新高斯过程模型,实时准确预测NCO的值,以决策下一时刻的最优控制率,实现生产过程对经济性能最优值的跟踪.对一个化工过程实例进行了仿真,结果验证了该方法的有效性.The economic performance of plants can be effectively improved in terms of control system structure opti- mization through the selection of necessary conditions of optimality (NCOs), including constraint and gradient information, as the implementation targets of control systems. In response to the difficulties in direct online measurements and in timely and accurate offline estimations of NCOs, a novel approach to NCO modeling, prediction, and control based on a Gaussian process is proposed. To process real-time data, the proposed process can update the Gaussian process model dynamically online and the NCOs can be accurately predicted to enable the best decision of the optimal control rate for the next moment, thereby enabling process economic performance to achieve optimality. The proposed approaches are applied to an exemplary chemical process simulation, and the results show the effectiveness of the proposed method.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15