检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics,Yunnan University
出 处:《Science China Mathematics》2015年第11期2329-2346,共18页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11361073)
摘 要:In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.In this paper, firstly, by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation, we construct parameterized delta-shock and constant density solutions, then we show that, as the flux perturbation vanishes, they converge to the delta-shock and vacuum state solutions of the zero-pressure flow, respectively. Secondly, we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure. Furthermore, we rigorously prove that, as the two-parameter flux perturbation vanishes, any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow; any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state. Finally, numerical results are given to present the formation processes of delta shock waves and vacuum states.
关 键 词:Euler equations of isentropic gas dynamics zero-pressure flow transport equations Riemann problem delta shock wave vacuum flux approximation numerical simulations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30