机构地区:[1]IUSTI Laboratory,UMR 7343,Aix-Marseille Université,Technopole de Chateau-Gombert,5 rue Enrico Fermi,13453 Marseille Cedex13,France [2]Energy Laboratory,Research in Energy and Thermal Transfer Team,Abdelmalek Essaadi University,Faculty of Sciences and Techniques,Tangier,Morocco
出 处:《Journal of Hydrodynamics》2015年第4期604-615,共12页水动力学研究与进展B辑(英文版)
摘 要:This paper investigates a numerical and experimental study about buoyant wall turbulent jet in a static homogeneous environment. A light fluid of fresh water is injected horizontally and tangentially to a plane wall into homogenous salt water ambient. This later is given with different values of salinity and the initial fractional density is small, so the applicability of the Boussinesq approximation is valid. Since the domain temperature is assumed to be constant, the density of the mixture is a function of the salt concentration only. Mathematical model is based on the finite volume method and reports on an application of standard k- ? turbulence model for steady flow with densimetric Froude numbers of 1-75 and Reynolds numbers of 2 000-6 000. The basic features of the model are the conservation of mass, momentum and concentration. The boundaries of jet body, the radius and cling length are determined. It is found that the jet spreading and behavior depend on the ratio between initial buoyancy flux and momentum, i.e., initial Froude number, and on the influence of wall boundary which corresponds to Coanda effect. Laboratory experiments were conducted with photographic observations of jet trajectories and numerical results are described and compared with the experiments. A good agreement with numerical and experimental results has been achieved.This paper investigates a numerical and experimental study about buoyant wall turbulent jet in a static homogeneous environment. A light fluid of fresh water is injected horizontally and tangentially to a plane wall into homogenous salt water ambient. This later is given with different values of salinity and the initial fractional density is small, so the applicability of the Boussinesq approximation is valid. Since the domain temperature is assumed to be constant, the density of the mixture is a function of the salt concentration only. Mathematical model is based on the finite volume method and reports on an application of standard k- ? turbulence model for steady flow with densimetric Froude numbers of 1-75 and Reynolds numbers of 2 000-6 000. The basic features of the model are the conservation of mass, momentum and concentration. The boundaries of jet body, the radius and cling length are determined. It is found that the jet spreading and behavior depend on the ratio between initial buoyancy flux and momentum, i.e., initial Froude number, and on the influence of wall boundary which corresponds to Coanda effect. Laboratory experiments were conducted with photographic observations of jet trajectories and numerical results are described and compared with the experiments. A good agreement with numerical and experimental results has been achieved.
关 键 词:wall jet TURBULENCE Boussinesq approximation k-? model BUOYANCY cling length
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...