Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects  

Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects

在线阅读下载全文

作  者:SALEEM S. NADEEM S. 

机构地区:[1]Department of Mathematics, COMSATS Institute of Information Technology [2]Department of Mathematics, Quaid-I-Azam University

出  处:《Journal of Hydrodynamics》2015年第4期616-623,共8页水动力学研究与进展B辑(英文版)

摘  要:This paper is concerned with the mutual effects of viscous dissipation and slip effects on a rotating vertical cone in a viscous fluid. Similarity solutions for rotating cone with wall temperature boundary conditions provides a system of nonlinear ordinary differential equations which have been treated by optimal homotopy analysis method(OHAM). The obtained analytical results in comparison with the numerical ones show a noteworthy accuracy for a special case. Effects for the velocities and temperature are revealed graphically and the tabulated values of the surface shear stresses and the heat transfer rate are entered in tables. From the study it is seen that the slip parameter γ enhances the primary velocity while the secondary velocity reduces. Further it is observed that the heat transfer rate Nu Re-1/2x increases with Eckert number Ec and Prandtl number Pr.This paper is concerned with the mutual effects of viscous dissipation and slip effects on a rotating vertical cone in a viscous fluid. Similarity solutions for rotating cone with wall temperature boundary conditions provides a system of nonlinear ordinary differential equations which have been treated by optimal homotopy analysis method(OHAM). The obtained analytical results in comparison with the numerical ones show a noteworthy accuracy for a special case. Effects for the velocities and temperature are revealed graphically and the tabulated values of the surface shear stresses and the heat transfer rate are entered in tables. From the study it is seen that the slip parameter γ enhances the primary velocity while the secondary velocity reduces. Further it is observed that the heat transfer rate Nu Re-1/2x increases with Eckert number Ec and Prandtl number Pr.

关 键 词:mixed convection incompressible flow differential equations slip effects viscous dissipation 

分 类 号:O357[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象