面向对象变化检测中多时相图像分割模式影响评价  被引量:7

Evaluating the effectiveness of multi-temporal image segmentation on object-based change detection

在线阅读下载全文

作  者:胡永月 肖鹏峰[1,2,3] 冯学智[1,2,3] 张学良[1,2,3] 袁敏[1,2,3] 

机构地区:[1]江苏省地理信息技术重点实验室,南京大学,南京210023 [2]卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京210023 [3]南京大学地理信息科学系,南京210023

出  处:《南京大学学报(自然科学版)》2015年第5期1049-1057,共9页Journal of Nanjing University(Natural Science)

基  金:浙江省科技计划(2014F50022);江苏高校“青蓝工程”(201423)

摘  要:面向对象变化检测是高分辨率遥感图像分析技术中的研究热点,在国土资源监测、城市扩展、森林植被变化等方面具有广泛的应用前景.多时相图像分割是面向对象变化检测的关键步骤,主要包括三种模式:多时相组合分割、单时相分割与多时相分别分割.本文通过分析三种多时相图像分割模式下变化对象的差异,评价多时相图像分割策略对于面向对象变化检测结果的影响.结果表明,多时相分割模式对变化对象形状以及检测精度的影响均较大,三种模式中的多时相组合图像分割模式对本文研究区的变化检测精度最高.Object-based image analysis(OBIA)has shown improved performances over the classical pixel-based methods,and object-based change detection(OBCD)is an important part of OBIA.From the perspective for object extraction of multi-temporal image data,the image segmentation can be categorized into three different models:two time data stacking as a whole for segmentation,which produce spatially corresponding objects;Extracting objects from one time data and assigning to the other time data without segmentation;segmenting independently for the two time data.The evaluation of three multi-temporal image segmentation models remains a critical significance because objects in different models are of various sizes and shapes.In this paper we use change vector analysis to divide objects into changed and unchanged objects,the changed objects acquired from the three image segmentation models are analyzed using qualitative and quantitative comparison,and the standard evaluation map is acquired by the artificial visual in-terpretation.From the comparison of three multi-temporal image segmentation models,it shows that the first image segmentation model has the highest overall accuracy and Kappa coefficient on both of the two study areas.In practical OBCD applications,we can choose the appropriate image segmentation models according to the status of study area and application purposes.

关 键 词:高分辨率遥感图像 面向对象变化检测 多时相图像分割 变化检测精度评价 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象