检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子工程学院通信对抗系,安徽合肥230037
出 处:《系统工程与电子技术》2015年第11期2480-2486,共7页Systems Engineering and Electronics
基 金:国家自然科学基金(60702015)资助课题
摘 要:针对"完全扰动"情况下压缩感知雷达(compressed sensing radar,CSR)观测矢量和感知矩阵严重失配,进而引起参数估计性能急剧下降的问题,提出了一种基于贝叶斯压缩感知(Bayesian compressed sensing,BCS)的稳健参数估计方法。首先构造"完全扰动"情况下CSR参数估计的稀疏线性模型,并从稀疏矢量的最大后验概率(maximum a posteriori,MAP)出发,推导了完全扰动矩阵服从柯西分布时的优化目标函数;随后通过稀疏矢量和尺度参数的交替迭代,求得稀疏矢量的最优解。与现有重构算法及其改进算法相比,该方法能够有效改善CSR系统应对失配误差的稳健性,提高目标成功检测的概率和参数估计的精度。计算机仿真实验验证了该方法的有效性和鲁棒性。In practical application, the mismatch between measurement vector and sensing matrix caused by corn pletely perturbed observations will result in a sharp decline in the performance of parameter estimation for compressed sensing radar (CSR). A novel robust parameter estimation algorithm is proposed based on Bayesian compressed sens- ing (BCS). The completely perturbed sparse linear model is firstly built, and the robust target function is derived with the maximum a posteriori (MAP) of the sparse vector when the completely perturbed matrix obeys Cauchy distribu- tion. Then the optimal solution is achieved through the alternate iteration between the sparse vector and the scale pa- rameter. Compared with most existing recovery algorithm and their derivants, the proposed method effectively im proves the robustness against the foregoing mismatch, increases the target detection probability and reduces the estima- tion error. The effectiveness of the proposed algorithms is demonstrated by computer simulations.
关 键 词:压缩感知雷达 完全扰动 柯西分布 Lorentzian范数 交替迭代
分 类 号:TN958.8[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.86.218