Determination of the archaeal and bacterial communities in two-phase and single-stage anaerobic systems by 454 pyrosequencing  被引量:5

Determination of the archaeal and bacterial communities in two-phase and single-stage anaerobic systems by 454 pyrosequencing

在线阅读下载全文

作  者:Yogananda Maspolim Yan Zhou Chenghong Guo Keke Xiao Wun Jern Ng 

机构地区:[1]Advanced Environmental Biotechnology Centre (AEBC),Nanyang Environment and Water Research Institute (NEWRI),Nanyang Technological University (NTU) [2]School of Civil and Environmental Engineering,Nanyang Technological University (NTU)

出  处:《Journal of Environmental Sciences》2015年第10期121-129,共9页环境科学学报(英文版)

基  金:supported with funding from the National Research Foundation(NRF-CRP5-2009-02),Singapore for the project"Wastewater Treatment Plants as Urban Eco Power Stations"

摘  要:2-Phase anaerobic digestion(AD), where the acidogenic phase was operated at 2 day hydraulic retention time(HRT) and the methanogenic phase at 10 days HRT, had been evaluated to determine if it could provide higher organic reduction and methane production than the conventional single-stage AD(also operated at 12 days HRT). 454 pyrosequencing was performed to determine and compare the microbial communities. The acidogenic reactor of the 2-phase system yielded a unique bacterial community of the lowest richness and diversity, while bacterial profiles of the methanogenic reactor closely followed the single-stage reactor. All reactors were predominated by hydrogenotrophic methanogens, mainly Methanolinea. Unusually, the acidogenic reactor contributed up to 24%of total methane production in the 2-phase system. This could be explained by the presence of Methanosarcina and Methanobrevibacter, and their activities could also help regulate reactor alkalinity during high loading conditions through carbon dioxide production. The enrichment of hydrolytic and acidogenic Porphyromonadaceae, Prevotellaceae, Ruminococcaceae and unclassified Bacteroidetes in the acidogenic reactor would have contributed to the improved sludge volatile solids degradation, and ultimately the overall 2-phase system's performance. Syntrophic acetogenic microorganisms were absent in the acidogenic reactor but present in the downstream methanogenic reactor, indicating the retention of various metabolic pathways also found in a single-stage system. The determination of key microorganisms further expands our understanding of the complex biological functions in AD process.2-Phase anaerobic digestion(AD), where the acidogenic phase was operated at 2 day hydraulic retention time(HRT) and the methanogenic phase at 10 days HRT, had been evaluated to determine if it could provide higher organic reduction and methane production than the conventional single-stage AD(also operated at 12 days HRT). 454 pyrosequencing was performed to determine and compare the microbial communities. The acidogenic reactor of the 2-phase system yielded a unique bacterial community of the lowest richness and diversity, while bacterial profiles of the methanogenic reactor closely followed the single-stage reactor. All reactors were predominated by hydrogenotrophic methanogens, mainly Methanolinea. Unusually, the acidogenic reactor contributed up to 24%of total methane production in the 2-phase system. This could be explained by the presence of Methanosarcina and Methanobrevibacter, and their activities could also help regulate reactor alkalinity during high loading conditions through carbon dioxide production. The enrichment of hydrolytic and acidogenic Porphyromonadaceae, Prevotellaceae, Ruminococcaceae and unclassified Bacteroidetes in the acidogenic reactor would have contributed to the improved sludge volatile solids degradation, and ultimately the overall 2-phase system's performance. Syntrophic acetogenic microorganisms were absent in the acidogenic reactor but present in the downstream methanogenic reactor, indicating the retention of various metabolic pathways also found in a single-stage system. The determination of key microorganisms further expands our understanding of the complex biological functions in AD process.

关 键 词:Sewage sludge 2-Phase anaerobic digestion Microbial community 454 pyrosequencing Methanogen 

分 类 号:X703[环境科学与工程—环境工程] X172

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象