检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学电子科学与工程学院,长沙410073
出 处:《计算机工程与应用》2015年第20期145-152,共8页Computer Engineering and Applications
基 金:国家自然科学基金(No.61171135)
摘 要:人类视觉系统能够通过对场景中感兴趣的不同事物进行显著性检测,有效地配置处理资源。基于视觉注意机制的显著性检测方法能够简化遥感影像场景分析、目标解译的复杂程度,节省处理资源。以视觉注意机制为基础,提出了一种尺度自适应的SAR图像显著性检测方法,通过不同尺度下的局部复杂度和自差异性来度量图像的显著性测度,设计显著性尺度确定算法以及融合显著性尺度和显著性测度以生成显著图,完成显著性检测的流程。实验结果表明该方法能够有效应用于SAR图像显著性检测,较之其他主流显著区域检测算法更适用于SAR图像场景分析。Human vision system can assign processing resource efficiently by saliency detection of different interesting objects in the scene. The saliency detection method based on the visual attention mechanism is employed to simplify the scene analysis and the target interpretation of remote sensing images, which economizes processing resources. On the foundation of visual attention mechanism, a scale self-adaptive saliency detection method of SAR image is proposed. The local complexity metric and self-dissimilarity metric of multiple scales are utilized to compute the saliency metric. More-over, the way of saliency scale determination has been designed. The saliency map has been built by combining saliency metric with the saliency scale, which is the last step of saliency detection. Experimental results show that the proposed method can detect the saliency of SAR image effectively, and that the proposed method is more reliable for SAR image scene analysis than other state-of-the-art saliency detection methods.
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3