Fabrication of NiTi Shape Memory Alloys with Graded Porosity to Imitate Human Long-bone Structure  被引量:1

Fabrication of NiTi Shape Memory Alloys with Graded Porosity to Imitate Human Long-bone Structure

在线阅读下载全文

作  者:Dan Zhou Yan Gao Ming Lai Hao Li Bin Yuan Min Zhu 

机构地区:[1]School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China

出  处:《Journal of Bionic Engineering》2015年第4期575-582,共8页仿生工程学报(英文版)

摘  要:Replacement of damaged long bones is still a significant challenge in surgery. In the present study, a NiTi Shape Memory Alloy (SMA) constructed with graded porosity imitating human long bone structure was fabricated via a dedicated moulding procedure. The outer layer (porosity 14 %) and inner layer (porosity 52 %) of the bone-like graded NiTi alloy were found to be co-axial very well with the interface with a good metallurgical bonding. Moreover, the compression strength and elastic modulus of the graded-porosity NiTi SMAs were found to be 360.6 MPa and 6.7 GPa, respectively, which have been improved by its coaxiality compared with the one with poor coaxiality. The graded-porosity NiTi SMAs exhibit resembling mechanical performance as human long-bones, and are considered to be better implant candidates for long bone replacement.Replacement of damaged long bones is still a significant challenge in surgery. In the present study, a NiTi Shape Memory Alloy (SMA) constructed with graded porosity imitating human long bone structure was fabricated via a dedicated moulding procedure. The outer layer (porosity 14 %) and inner layer (porosity 52 %) of the bone-like graded NiTi alloy were found to be co-axial very well with the interface with a good metallurgical bonding. Moreover, the compression strength and elastic modulus of the graded-porosity NiTi SMAs were found to be 360.6 MPa and 6.7 GPa, respectively, which have been improved by its coaxiality compared with the one with poor coaxiality. The graded-porosity NiTi SMAs exhibit resembling mechanical performance as human long-bones, and are considered to be better implant candidates for long bone replacement.

关 键 词:NiTi SMA graded porosity long bone structure compressive strength recoverable strain 

分 类 号:TG139.6[一般工业技术—材料科学与工程] TG146.21[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象