Rheological behavior of semi-solid TiB_2/7075 composites and simulation of their rheocasting processes  被引量:1

Rheological behavior of semi-solid TiB_2/7075 composites and simulation of their rheocasting processes

在线阅读下载全文

作  者:Qian Gao Bin Yang Gui-sheng Gan 

机构地区:[1]State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing [2]Collaborative Innovation Center of Steel Technology [3]School of Materials Science and Engineering, Chongqing University of Technology

出  处:《China Foundry》2015年第5期354-361,共8页中国铸造(英文版)

摘  要:In the present study, in-situ Ti B2 particle-reinforced 7075 aluminum alloy was produced by adding a mixture of K2 Ti F6 and KBF4 to the molten base alloy. The effects of the addition of 4.5wt.% and 9wt.%Ti B2 on the apparent viscosity and microstructure were investigated. The results showed that adding Ti B2 is effective for optimizing primary α-Al, but compared with the 4.5wt.%Ti B2/7075 composite, the addition of 9wt.%Ti B2 had no further significant refinement role in the 9wt.%Ti B2/7075 composite due to particle aggregation. The viscosities of semi-solid 7075 alloy and Ti B2/7075 composite slurries increased with an increase in solid fraction, but decreased with an increase in shear rate. The viscosity of 4.5wt.% Ti B2/7075 was the lowest among the three samples, and that of 7075 alloy was the highest under the same conditions. The primary α-Al grain size was decreased, and the dendritic grains grew into spherical shapes after shearing. Based on the experimental results, viscosity models of the semi-solid 7075 alloy and 4.5wt.% and 9wt.%Ti B2/7075 composites were formulated. According to the simulation results, the shrinkage porosity of the 4.5wt.%Ti B2/7075 wheel was lower than those of the 7075 alloy and 9wt.%Ti B2/7075 wheels.In the present study, in-situ Ti B2 particle-reinforced 7075 aluminum alloy was produced by adding a mixture of K2 Ti F6 and KBF4 to the molten base alloy. The effects of the addition of 4.5wt.% and 9wt.%Ti B2 on the apparent viscosity and microstructure were investigated. The results showed that adding Ti B2 is effective for optimizing primary α-Al, but compared with the 4.5wt.%Ti B2/7075 composite, the addition of 9wt.%Ti B2 had no further significant refinement role in the 9wt.%Ti B2/7075 composite due to particle aggregation. The viscosities of semi-solid 7075 alloy and Ti B2/7075 composite slurries increased with an increase in solid fraction, but decreased with an increase in shear rate. The viscosity of 4.5wt.% Ti B2/7075 was the lowest among the three samples, and that of 7075 alloy was the highest under the same conditions. The primary α-Al grain size was decreased, and the dendritic grains grew into spherical shapes after shearing. Based on the experimental results, viscosity models of the semi-solid 7075 alloy and 4.5wt.% and 9wt.%Ti B2/7075 composites were formulated. According to the simulation results, the shrinkage porosity of the 4.5wt.%Ti B2/7075 wheel was lower than those of the 7075 alloy and 9wt.%Ti B2/7075 wheels.

关 键 词:SEMI-SOLID Ti B2/7075 composites rheological behavior simulation 

分 类 号:TG249.29[金属学及工艺—铸造]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象