重症脑功能损伤的脑电图分级标准  被引量:3

EEG grading standards of severe brain injury

在线阅读下载全文

作  者:罗洪英[1] 

机构地区:[1]山西煤炭中心医院神经内科,太原030006

出  处:《中国实用医刊》2015年第21期31-32,共2页Chinese Journal of Practical Medicine

摘  要:目的:探讨重症脑功能损伤的脑电图分级标准。方法144例重症脑功能损伤患者均给予动态脑电图监测,记录患者治疗结局并分析与Lavizzari、Synek分级情况相关性。结果 Lavizzari分级结果中I级与Synek分级对比差异未见统计学意义( P>0.05),Ⅱ级、Ⅲ级人数显著高于Synek分级,而Ⅳ级、Ⅴ级均较Synek分级显著减少(P<0.05);Lavizzari分级预测生存准确率与Synek分级对比差异未见统计学意义(P>0.05),而Lavizzari分级预测死亡准确率仅为84.55%,显著低于Synek分级预测死亡准确率(95.91%,P<0.05)。结论重症脑功能损伤患者经动态脑电图监测后,给予Synek分级较Lavizzari分级结果更为准确,临床医生应掌握此类患者脑电图及分级特点,给予准确分级后评估患者实际情况并实施针对性的治疗方法,保障患者疗效及预后。Objective To investigate the EEG grading standards of severe brain injury.Meth-ods The 144 cases of severe brain injury were given ambulatory EEG monitoring, recording and analysis of the outcome of patients treated with Lavizzari, Synek grading circumstances relevant, given statistical analysis concluded.Results Lavizzari classification results in Class I and Synek classification compari-son had no significant difference( P>0.05) , class II, III level number was significantly higher than Syn-ek classification, while Class IV, V level than Synek classification significantly reduced ( P 〈0.05 );Lavizzari classification accuracy of the prediction of survival and Synek classification comparison had no significant difference( P>0.05 ) , while Lavizzari graded accurately predicted death rate was 84.55%, which was significantly lower than predicted mortality Synek classification accuracy rate ( 95.91%, P〈0.05).Conclusions Dynamic EEG monitoring for patients with severe brain injury, can give Synek classification more accurate results than the Lavizzari classification, clinicians should understand the characteristics of the EEG and classification, to give an accurate assessment of the patient classification actual situation and implement targeted treatment, protect the outcomes and prognosis.

关 键 词:重症脑功能损伤 脑电图 分级标准 

分 类 号:R59[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象