检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏漳文 刘爱琴[1] 梁慧玲[2] 郭福涛[1] 赵嘉阳 林芳芳[2]
机构地区:[1]福建农林大学林学院,福建福州350002 [2]福建农林大学计算机与信息学院,福建福州350002
出 处:《森林与环境学报》2015年第4期370-376,共7页Journal of Forest and Environment
基 金:国家自然科学基金项目(31400552);福建省教育厅资助省属高校专项(JK2014012)
摘 要:福建省森林覆盖率位居全国第一,同时福建省也是林火高发区之一,但关于该地区林火预测模型和空间格局的研究还不完善。将2000-2004年林火数据分为60%(建模)和40%(校验)两部分进行建模和校验,得到5个中间模型,选择其中3个中间模型中显著的因子进入最后的全样本数据拟合,并使用2005年林火数据做独立校验。结果表明,日最高地表气温、日最低地表气温、平均风速、最大风速、20-20时降水量、日照时间、日最高气温、平均相对湿度、最小相对湿度共9个变量与林火发生显著相关。全模型拟合结果显示模型的预测准确率为72.3%。Fujian Province is a high fire frequency region, however, the studies regarding the prediction model and spatial distribution of forest fire of Fujian are relatively rare. Due to the close relationship between climate factors and fire occurrence, in this study, the fire prediction model was established based on daily weather factors using logistic regression. Meanwhile the fire dataset during between 2000 and 2004 was divided into 60% (training) and 40% (validation) and made five repetitions to keep the stability of variable selection. Besides, fire dataset of 2005 was selected for further model validation. Therefore, five intermediate sub-models were created. The variables that were significant in at least three of five sub-models were selected to fit the final complete dataset and fire data of 2005 were applied to evaluate the prediction accuracy of model. The results showed that 9 variables such as daily maximum ground surface temperature, daily minimum ground surface temperature, and daily mean windspeed significantly impacted fire occurrence. In addition, the predicting accuracy of fire model was 72.3%.
关 键 词:人为火 逻辑斯蒂回归 气象因子 模型预测 空间格局
分 类 号:S762.2[农业科学—森林保护学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.149