检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jianjun YU Tongyu ZHU
机构地区:[1]Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China [2]State Key Lab of Software Development Environment, B eihang University, Beijing 100190, China
出 处:《Frontiers of Computer Science》2015年第4期608-622,共15页中国计算机科学前沿(英文版)
摘 要:Hashtags, terms prefixed by a hash-symbol #, are widely used and inserted anywhere within short messages (tweets) on micro-blogging systems as they present rich sen- timent information on topics that people are interested in. In this paper, we focus on the problem of hashtag recommenda- tion considering their personalized and temporal aspects. As far as we know, this is the first work addressing this issue spe- cially to recommend personalized hashtags combining long- term and short-term user interest. We introduce three features to capture personal and temporal user interest: 1) hashtag textual information; 2) user behavior; and 3) time. We of- fer two recommendation models for comparison: a linear- combined model, and an enhanced session-based temporal graph (STG) model, Topic-STG, considering the features to learn user preferences and subsequently recommend person- alized hashtags. Experiments on two real tweet datasets illus- trate the effectiveness of the proposed models and algorithms.Hashtags, terms prefixed by a hash-symbol #, are widely used and inserted anywhere within short messages (tweets) on micro-blogging systems as they present rich sen- timent information on topics that people are interested in. In this paper, we focus on the problem of hashtag recommenda- tion considering their personalized and temporal aspects. As far as we know, this is the first work addressing this issue spe- cially to recommend personalized hashtags combining long- term and short-term user interest. We introduce three features to capture personal and temporal user interest: 1) hashtag textual information; 2) user behavior; and 3) time. We of- fer two recommendation models for comparison: a linear- combined model, and an enhanced session-based temporal graph (STG) model, Topic-STG, considering the features to learn user preferences and subsequently recommend person- alized hashtags. Experiments on two real tweet datasets illus- trate the effectiveness of the proposed models and algorithms.
关 键 词:RECOMMENDATION hashtag time-sensitive userinterest
分 类 号:TP393.4[自动化与计算机技术—计算机应用技术] TV698.11[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222