Combining long-term and short-term user interest for personalized hashtag recommendation  被引量:9

Combining long-term and short-term user interest for personalized hashtag recommendation

在线阅读下载全文

作  者:Jianjun YU Tongyu ZHU 

机构地区:[1]Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China [2]State Key Lab of Software Development Environment, B eihang University, Beijing 100190, China

出  处:《Frontiers of Computer Science》2015年第4期608-622,共15页中国计算机科学前沿(英文版)

摘  要:Hashtags, terms prefixed by a hash-symbol #, are widely used and inserted anywhere within short messages (tweets) on micro-blogging systems as they present rich sen- timent information on topics that people are interested in. In this paper, we focus on the problem of hashtag recommenda- tion considering their personalized and temporal aspects. As far as we know, this is the first work addressing this issue spe- cially to recommend personalized hashtags combining long- term and short-term user interest. We introduce three features to capture personal and temporal user interest: 1) hashtag textual information; 2) user behavior; and 3) time. We of- fer two recommendation models for comparison: a linear- combined model, and an enhanced session-based temporal graph (STG) model, Topic-STG, considering the features to learn user preferences and subsequently recommend person- alized hashtags. Experiments on two real tweet datasets illus- trate the effectiveness of the proposed models and algorithms.Hashtags, terms prefixed by a hash-symbol #, are widely used and inserted anywhere within short messages (tweets) on micro-blogging systems as they present rich sen- timent information on topics that people are interested in. In this paper, we focus on the problem of hashtag recommenda- tion considering their personalized and temporal aspects. As far as we know, this is the first work addressing this issue spe- cially to recommend personalized hashtags combining long- term and short-term user interest. We introduce three features to capture personal and temporal user interest: 1) hashtag textual information; 2) user behavior; and 3) time. We of- fer two recommendation models for comparison: a linear- combined model, and an enhanced session-based temporal graph (STG) model, Topic-STG, considering the features to learn user preferences and subsequently recommend person- alized hashtags. Experiments on two real tweet datasets illus- trate the effectiveness of the proposed models and algorithms.

关 键 词:RECOMMENDATION hashtag time-sensitive userinterest 

分 类 号:TP393.4[自动化与计算机技术—计算机应用技术] TV698.11[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象