检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学地球科学与工程学院水科学系,南京210023 [2]安徽省水利水资源重点实验室,安徽蚌埠233000
出 处:《水力发电学报》2015年第10期35-41,共7页Journal of Hydroelectric Engineering
摘 要:历史洪水能够有效提高洪水频率分析结果精度和可靠性。在实际应用中,部分历史洪水难以定量,常用的确定性方法对此类资料难以得到有效利用,影响到洪水频率分析结果的可靠性。本次研究将最大似然估计和叶斯方法耦合起来,进行考虑不定量历史洪水信息的洪水频率分析,分别以模拟和实测序列加以验证,相比传统确定性方法,该方法不仅可有效利用不定量历史洪水信息,还可提高洪水频率分析成果的精度。Consideration of historical flood could improve the accuracy and reliability of flood frequency analysis. In practice, however, some historical floods cannot be quantitated and are difficult to use in a common deterministic methods, thus lowering the reliability of parameter estimation and design flood in the flood frequency analysis. This paper focuses on the coupling of a Bayesian method a maximum likelihood estimator in the frequency analysis using non-quantitative historical floods. This coupling method and its application are demonstrated in a case study of synthetic and measured flood series. Compared to several traditional deterministic method, the coupling method not merely makes it possible to make use of non-quantitative historical floods, but can improve estimation accuracy.
关 键 词:贝叶斯方法 不定量历史洪水:洪水频率分析 最大似然估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81