检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]无锡职业技术学院机械技术学院,江苏无锡214000 [2]南京工业大学机械与动力工程学院,南京210009
出 处:《组合机床与自动化加工技术》2015年第10期61-63,68,共4页Modular Machine Tool & Automatic Manufacturing Technique
基 金:国家自然科学基金资助项目(51175242)
摘 要:磨削表面具有明显的各向异性特性,表面微凸体可以近似地用圆柱体来模拟。建立了弹塑性微凸体接触的有限元对称模型,分析了接触面积、硬度和接触力与干涉量的关系,并在有限元分析的基础上进行了经验公式的拟合。结果表明:弹塑性接触阶段微凸体的等效硬度随着接触几何变化而改变,而不是材料的常数。拟合得到的模型在弹性和弹塑性接触区域是连续的。除了在刚达到弹塑性变形的极小区间内,拟合公式与有限元数据的相对误差在10%以内。研究结果可以应用于各向异性表面的微凸体的接触特性模拟中,为磨削表面接触特性的研究奠定了理论基础。Rough surface contact research has always been one of the main topics of the tribology. The asperity contact is the basis study of contact of rough surface. The asperity was assumed to be sphere in much research,but this assumption are not applicable when the interface is anisotropic. A finite element model of single elastic-plastic cylindrical asperity with rigid flat surface was developed to analyze the relationships among contact areas,contact force,contact hardness and penetration depth with finite element method( FEM). This asperity model is suitable for anisotropic surface,such as grind surface. Results showed that the contact hardness varied with the deformed contact geometry,rather than material constants. An empirical formulation was established and was continuous in all intervals and valid for different scales. Good meshing and the convergence of finite element could ensure the accuracy of the results. The relative error between the fitted equations with actual values obtained by FEMcalculation was less than 10%,expect the small area when the plastic deformation just occur. This model can be applied in to the asperity model of anisotropic interface and laid the theoretical foundations for model of grinding interface.
分 类 号:TH113.1[机械工程—机械设计及理论] TG506[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13