Nature of the band gap of halide perovskites ABX_3(A=CH_3NH_3,Cs;B=Sn,Pb;X=Cl,Br,I):First-principles calculations  被引量:4

Nature of the band gap of halide perovskites ABX_3(A=CH_3NH_3,Cs;B=Sn,Pb;X=Cl,Br,I):First-principles calculations

在线阅读下载全文

作  者:袁野 徐闰 徐海涛 洪峰 徐飞 王林军 

机构地区:[1]School of Materials Science and Engineering, Shanghai University [2]Department of Physics, Shanghai University

出  处:《Chinese Physics B》2015年第11期358-362,共5页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.11375112)

摘  要:The electronic structures of cubic structure of ABX3(A=CH3NH3, Cs; B=Sn, Pb; X=Cl, Br, I) are analyzed by den- sity functional theory using the Perdew-Burke-Ernzerhof exchange-correlation functional and using the Heyd-Scuseria- Ernzerhof hybrid functional. The valence band maximum (VBM) is found to be made up by an antibonding hybridization of B s and X p states, whereas bands made up by the π antibonding of B p and X p states dominates the conduction band minimum (CBM). The changes of VBM, CBM, and band gap with ion B and X are then systematically summarized. The natural band offsets of ABX3 are partly given. We also found for all the ABX3 perovskite materials in this study, the bandgap increases with an increasing lattice parameter. This phenomenon has good consistency with the experimental results.The electronic structures of cubic structure of ABX3(A=CH3NH3, Cs; B=Sn, Pb; X=Cl, Br, I) are analyzed by den- sity functional theory using the Perdew-Burke-Ernzerhof exchange-correlation functional and using the Heyd-Scuseria- Ernzerhof hybrid functional. The valence band maximum (VBM) is found to be made up by an antibonding hybridization of B s and X p states, whereas bands made up by the π antibonding of B p and X p states dominates the conduction band minimum (CBM). The changes of VBM, CBM, and band gap with ion B and X are then systematically summarized. The natural band offsets of ABX3 are partly given. We also found for all the ABX3 perovskite materials in this study, the bandgap increases with an increasing lattice parameter. This phenomenon has good consistency with the experimental results.

关 键 词:first-principles theory electron density of states band structure of crystalline solids organicinorganic hybrid nanostructures 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象