检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Petroleum Engineering, China University of Petroleum,Beijing [2]School of Science, Tibet University
出 处:《Chinese Physics B》2015年第11期643-649,共7页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11305268 and 11465017)
摘 要:Transport properties of a complex network can be reflected by the two-point resistance between any pair of two nodes. We systematically investigate a variety of typical complex networks encountered in nature and technology, in which we assume each link has unit resistance, and we find for non-sparse network connections a universal relation exists that the two-point resistance is equal to the sum of the inverse degree of two nodes up to a constant. We interpret our observations by the localization property of the network's Laplacian eigenvectors. The findings in this work can possibly be applied to probe transport properties of general non-sparse complex networks.Transport properties of a complex network can be reflected by the two-point resistance between any pair of two nodes. We systematically investigate a variety of typical complex networks encountered in nature and technology, in which we assume each link has unit resistance, and we find for non-sparse network connections a universal relation exists that the two-point resistance is equal to the sum of the inverse degree of two nodes up to a constant. We interpret our observations by the localization property of the network's Laplacian eigenvectors. The findings in this work can possibly be applied to probe transport properties of general non-sparse complex networks.
关 键 词:TRANSPORT complex networks two-point resistor Laplacian eigenvectors
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173