检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西北工业大学学报》2015年第5期804-810,共7页Journal of Northwestern Polytechnical University
基 金:中航工业产学研创新项目(Cxy2010x G18)资助
摘 要:由于航空器的弹性性质,飞行过程中飞行参数的不断变化会引发运动稳定性和阵风响应特性的改变。在设计颤振主动抑制或阵风减缓控制器的过程中,以某一飞行状态为基础设计出的控制律往往不能保证在一定飞行参数范围内的性能。针对此问题,首先通过非定常气动力有理拟合方法建立时域连续阵风响应状态空间方程,再考虑模型随马赫数和动压的变化特性建立线性参数变化(LPV)模型。最后以线性参数变化模型为基础构造了包含动压和马赫数参数不确定性的线性分式变换模型,并设计了机翼颤振主动抑制与阵风减缓鲁棒控制器。结果表明,对于算例机翼,其在马赫数0.5~0.7范围内的颤振动压平均增大10%,且在飞行参数不断变化的时域仿真中,翼尖过载的均方根值降低51.4%。The stability characteristics and dynamic responses of a flexible wing vary with flight conditions. During the design process of a controller for active flutter suppression or gust alleviation, the controller' s performance can- not be sustained when flight conditions change if it is designed on the basis of a single flight condition. To solve this problem, the time domain state-space model is firstly built up with rational function approximation of the unsteady aerodynamics, then the model's dependence on Math number and dynamic pressure is taken into account by con- strueting a linear parameter-varying (LPV) model. A linear fractional transformation model is finally built up on the basis of the LPV model; after which a robust controller is designed for active flutter suppression and gust allevia- tion. The results on a test wing show that the flutter dynamic pressure increases about 10% when the Mach number varies between 0. 5 and 0. 7. As can be seen from the simulation results, when the flight parameters keep varying, the root-mean-square of the wing tip overloads decreases by 51.4%.
关 键 词:非定常气动力 线性参数变化模型 鲁棒控制 颤振主动抑制 阵风减缓
分 类 号:V215.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.93