Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C–C bond cleavage  被引量:2

Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C–C bond cleavage

在线阅读下载全文

作  者:Weiping Deng Qinghong Zhang Ye Wang 

机构地区:[1]State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University

出  处:《Journal of Energy Chemistry》2015年第5期595-607,共13页能源化学(英文版)

基  金:supported by the National Natural Science Foundation of China (21173172 and 21473141);the Research Fund for the Doctorial Program of Higher Education (No. 20130121130001);the Program for Innovative Research Team in University (No. IRT_14R31)

摘  要:The catalytic transformation of cellulose, the major component of abundant and renewable lignocellulosic biomass, into building-block chemicals is a key to establishing sustainable chemical processes. Cellulose is a polymer of glucose and a lot research effort has been devoted to the conversion of cellulose to six-carbon platform compounds such as glucose and glucose derivatives through C-O bond activation. There also ex- ist considerable studies on the catalytic cleavage of C-C bonds in biomass for the production of high-value chemicals, in particular polyols and organic acids such as ethylene glycol and lactic acid. This review article highlights recent advances in the development of new catalytic systems and new strategies for the selective cleavage of C-C bonds in cellulose and its derived carbohydrates under inert, reductive and oxidative atmospheres to produce Q -Cs polyols and organic acids. The key factors that influence the catalytic performance will be clarified to provide insights for the design of more efficient catalysts for the transformation of cellulose with precise cleavage of C-C bonds to high-value chemicals. The reaction mechanisms will also be discussed to understand deeply how the selective cleavage of C-C bonds can be achieved in biomass.The catalytic transformation of cellulose, the major component of abundant and renewable lignocellulosic biomass, into building-block chemicals is a key to establishing sustainable chemical processes. Cellulose is a polymer of glucose and a lot research effort has been devoted to the conversion of cellulose to six-carbon platform compounds such as glucose and glucose derivatives through C-O bond activation. There also ex- ist considerable studies on the catalytic cleavage of C-C bonds in biomass for the production of high-value chemicals, in particular polyols and organic acids such as ethylene glycol and lactic acid. This review article highlights recent advances in the development of new catalytic systems and new strategies for the selective cleavage of C-C bonds in cellulose and its derived carbohydrates under inert, reductive and oxidative atmospheres to produce Q -Cs polyols and organic acids. The key factors that influence the catalytic performance will be clarified to provide insights for the design of more efficient catalysts for the transformation of cellulose with precise cleavage of C-C bonds to high-value chemicals. The reaction mechanisms will also be discussed to understand deeply how the selective cleavage of C-C bonds can be achieved in biomass.

关 键 词:Biomass Cellulose C-C bond activation Polyols Organic acids 

分 类 号:TQ351.0[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象