一种适用于泄流结构振动分析的信号降噪方法  被引量:19

De-noising method for vibration signal of flood discharge structure

在线阅读下载全文

作  者:张建伟[1] 江琦[1] 赵瑜[1] 朱良欢 郭佳[1] 

机构地区:[1]华北水利水电大学水利学院,郑州450011

出  处:《振动与冲击》2015年第20期179-184,共6页Journal of Vibration and Shock

基  金:国家自然科学基金(51009066);河南省高等学校青年骨干教师资助计划(2012GGJS-101);河南省科技攻关(142102310122;142300410177;132102310320)资助

摘  要:针对低信噪比泄流结构振动信号有效信息难以提取问题,提出将小波阈值与经验模态分解(EMD)联合的信号降噪方法。利用小波阈值滤除大部分高频白噪声,降低EMD端点效应;进行EMD分解获得具有相对真实物理意义的固态模量(IMF);通过频谱分析重构特征信息IMF获得降噪信号。构造仿真信号,将该方法与数字滤波、小波分析及EMD降噪效果进行对比。结果表明,该方法能精确滤除泄流结构的振动噪声保留信号特征信息,滤波降噪较优越。将其用于拉西瓦拱坝水弹性模型,精确分析坝体结构振动优势频率,为坝体结构的安全运行与在线监测提供基础,亦为大型泄流结构在强背景噪声下的结构有效信息提取提供捷径。In view of the difficulty in extracting useful characteristics from the vibration signal of flood discharge structure with low signal to noise ratio,a novel de-noising method,combining wavelet threshold and empirical mode decomposition( EMD),was proposed. First of all,a part of white noises were filtered out with the wavelet threshold method,which can reduce the endpoint effect of EMD; then the signal was decomposed with EMD,to obtain a series of intrinsic mode functions( IMFs) which contains real physical meanings; finally the IMFs including characteristic information were reconstructed to achieve the de-noised signal through spectrum analysis. Constructing a simulation signal,and comparing the filtering effect of this method with the conventional method of digital filter,wavelet threshold and EMD on the signal,it is shown that,the method presented is a superior de-noising method,which can filter the vibration noise of flood discharge structure accurately and retain the characteristic information. It has been used in the Laxiwa arch dam hydro-elastic model test,analyzing the dominate frequency of dam structure precisely,and providing the basis for safe operation and on-line monitoring of the dam structure.

关 键 词:泄流结构 振动信号 低信噪比 小波与EMD联合降噪 优势频率 

分 类 号:TV31[水利工程—水工结构工程] TB53[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象