检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫珂巍 王福[1] 梅国荣[1] 卢俊宇[1] 张岚[1] 付桂兰[1] 陈林[1] 刘友平[1] 陈鸿平[1]
机构地区:[1]成都中医药大学药学院中药材标准化教育部重点实验室四川省中药资源系统研究与开发利用重点实验室,四川成都611137
出 处:《中草药》2015年第20期3096-3099,共4页Chinese Traditional and Herbal Drugs
基 金:四川省教育厅自然科学项目(132130316);四川省科技厅项目(2015JY0012)
摘 要:目的采用近红外光谱技术(NIRS)建立广陈皮的定性分析模型,以建立快速鉴别广陈皮药材的方法。方法采集广陈皮与川陈皮的NIRS图,通过标准正交变量变换(SNV)预处理后采用聚类分析方法建立广陈皮与川陈皮鉴别模型,并进行模型内验证和模型外验证,建立了广陈皮定性分析模型。结果在4 000~10 000 cm-1广陈皮和川陈皮能够较好地区分,内部验证的准确率高达100%,外部验证准确率达到90.91%。结论采用近红外光谱技术对广陈皮样品进行鉴别是可行的。Objective To establish the qualitative analysis model for Guang Citrus Reticulata Pericarpium(GCRP) using near infrared spectroscopy, so as to establish a rapid method to identify GCRP. Methods After collecting the near-infrared spectra of GCRP and Chuan Citrus Reticulata Pericarpium(CCRP), standard orthogonal variable transformation(SNV) was used as pretreatment and cluster analysis method was used to establish identification models. The model validation and external validation were made, and a GCRP analysis model was established using near-infrared spectroscopy technology. Results In wavelength range of 4 000—10 000 cm-1, GCRP was able to be distinguished. The accuracy rate of internal validation was 100% and the accuracy rate of external validation was 90.91%. Conclusion It is feasible to identify GCRP samples by near infrared spectroscopy technique.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.21.235