Effect of Powder Particle Shape on the Properties of In Situ Ti–TiB Composite Materials Produced by Selective Laser Melting  被引量:19

Effect of Powder Particle Shape on the Properties of In Situ Ti–TiB Composite Materials Produced by Selective Laser Melting

在线阅读下载全文

作  者:Hooyar Attar Konda G.Prashanth Lai-Chang Zhang Mariana Calin Ilya V.Okulov Sergio Scudino Chao Yang Jürgen Eckert 

机构地区:[1]School of Engineering,Edith Cowan University [2]IFW Dresden,Institute for Complex Materials [3]TU Dresden,Institute of Materials Science [4]National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials,South China University of Technology

出  处:《Journal of Materials Science & Technology》2015年第10期1001-1005,共5页材料科学技术(英文版)

基  金:supported by the Australian Research Council’s Projects Funding Scheme (No. DP110101653);the European Commission (BioTiNet-ITN G.A. No.264635);the Deutsche Forschungsgemeinschaft (SFB/Transregio 79, Project M1)

摘  要:This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in situ Ti-TiB composite materials produced by selective laser melting (SLM) technology. Starting powder composite system was prepared by mixing 95 wt% commercially pure titanium (CP-Ti) and 5 wt% titanium diboride (TiB2) powders and subsequently milled for two different times (i.e. 2 h and 4 h). The milled powder mixtures after 2 h and 4 h show nearly spherical and irregular shape, respectively. Subsequently, the resultant Ti-5 wt% TiB2 powder mixtures were used for SLM processing. Scanning electron microscopy image of the SLM-processed Ti-TiB composite samples show needle-shape TiB phase distributed across the Ti matrix, which is the product of an in-situ chemical reaction between Ti and TiB2 during SLM. The Ti-TiB composite samples prepared from 2 h and 4 h milled Ti-TiB2 powders show different relative densities of 99.5% and 95.1%, respectively. Also, the compression properties such as ultimate strength and compression strain for the 99.5% dense composite samples is 1421 MPa and 17.8%, respectively, which are superior to those (883 MPa and 5.5%, respectively) for the 95.1% dense sample. The results indicate that once Ti and TiB2 powders are connected firmly to each other and powder mixture of nearly spherical shape is obtained, there is no additional benefit in increasing the milling time and, instead, it has a negative effect on the density (i.e. increasing porosity level) of the Ti-TiB composite materials and their mechanical properties.This work studied the preparation of starting powder mixture influenced by milling time and its effect on the particle morphology (especially the shape) and, consequently, density and compression properties of in situ Ti-TiB composite materials produced by selective laser melting (SLM) technology. Starting powder composite system was prepared by mixing 95 wt% commercially pure titanium (CP-Ti) and 5 wt% titanium diboride (TiB2) powders and subsequently milled for two different times (i.e. 2 h and 4 h). The milled powder mixtures after 2 h and 4 h show nearly spherical and irregular shape, respectively. Subsequently, the resultant Ti-5 wt% TiB2 powder mixtures were used for SLM processing. Scanning electron microscopy image of the SLM-processed Ti-TiB composite samples show needle-shape TiB phase distributed across the Ti matrix, which is the product of an in-situ chemical reaction between Ti and TiB2 during SLM. The Ti-TiB composite samples prepared from 2 h and 4 h milled Ti-TiB2 powders show different relative densities of 99.5% and 95.1%, respectively. Also, the compression properties such as ultimate strength and compression strain for the 99.5% dense composite samples is 1421 MPa and 17.8%, respectively, which are superior to those (883 MPa and 5.5%, respectively) for the 95.1% dense sample. The results indicate that once Ti and TiB2 powders are connected firmly to each other and powder mixture of nearly spherical shape is obtained, there is no additional benefit in increasing the milling time and, instead, it has a negative effect on the density (i.e. increasing porosity level) of the Ti-TiB composite materials and their mechanical properties.

关 键 词:Selective laser melting In situ Ti-TiB composite Powder shape Density Mechanical properties 

分 类 号:TB383.3[一般工业技术—材料科学与工程] O614.411[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象