一种基于混沌云模型的人工萤火虫优化算法  被引量:4

Glowworm Swarm Optimization Algorithm Based on Chaos Cloud Model

在线阅读下载全文

作  者:张亚楠[1] 刘升[1] 

机构地区:[1]上海工程技术大学管理学院,上海201620

出  处:《小型微型计算机系统》2015年第11期2609-2613,共5页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61075115)资助;上海市教委科研创新基金重点项目(12ZZ185)资助

摘  要:针对基本萤火虫优化(GSO)算法存在的求解精度不高、收敛速度慢、易陷入局部极小等缺陷,引入混沌算法和云模型算法对GSO的进化机制进行优化,提出一种基于混沌云模型的萤火虫优化(CCMGSO)算法.该算法在进化过程中应用云模型算法对优秀萤火虫进行局部发掘求精,增加求解精度;应用混沌算法对普通萤火虫进行全局探索寻优,避免陷入局部最优.通过基准函数的仿真实验表明,与基本萤火虫算法、最大最小荧光素值萤火虫算法相比,CCMGSO算法表现更优,且具有求解精度高、收敛速度快和寻找全局最优能力强等优点.To solve the problems of glowworm swarm optimization( GSO) algorithm in lowcomputational accuracys,lowconvergence speed,and easy to fall into local optimizaiton,the chaos algorithm and cloud model algorithm were introduced to optimize the evolution mechanism of GSO and chaos cloud model glowworm swarm optimization( CCMGSO) algorithm was proposed. In the evolutionary process,the cloud model algorithm and excellent glowworms were applied to local excavation refinement,to increase the accuracy of solution,meanwhile the chaos algorithm and ordinary glowworms were used to exploration of global optimization,to avoid falling into local optimal. Through the functions testing,experiment results showthat the proposed algorithm is superior to GSO and GSO based on max-min luciferin in computational accuracys,covergence speed and find the global optimum.

关 键 词:人工萤火虫优化算法 云模型 混沌算法 函数优化 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象