检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《小型微型计算机系统》2015年第11期2609-2613,共5页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61075115)资助;上海市教委科研创新基金重点项目(12ZZ185)资助
摘 要:针对基本萤火虫优化(GSO)算法存在的求解精度不高、收敛速度慢、易陷入局部极小等缺陷,引入混沌算法和云模型算法对GSO的进化机制进行优化,提出一种基于混沌云模型的萤火虫优化(CCMGSO)算法.该算法在进化过程中应用云模型算法对优秀萤火虫进行局部发掘求精,增加求解精度;应用混沌算法对普通萤火虫进行全局探索寻优,避免陷入局部最优.通过基准函数的仿真实验表明,与基本萤火虫算法、最大最小荧光素值萤火虫算法相比,CCMGSO算法表现更优,且具有求解精度高、收敛速度快和寻找全局最优能力强等优点.To solve the problems of glowworm swarm optimization( GSO) algorithm in lowcomputational accuracys,lowconvergence speed,and easy to fall into local optimizaiton,the chaos algorithm and cloud model algorithm were introduced to optimize the evolution mechanism of GSO and chaos cloud model glowworm swarm optimization( CCMGSO) algorithm was proposed. In the evolutionary process,the cloud model algorithm and excellent glowworms were applied to local excavation refinement,to increase the accuracy of solution,meanwhile the chaos algorithm and ordinary glowworms were used to exploration of global optimization,to avoid falling into local optimal. Through the functions testing,experiment results showthat the proposed algorithm is superior to GSO and GSO based on max-min luciferin in computational accuracys,covergence speed and find the global optimum.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.27