Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface properties  被引量:2

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface properties

在线阅读下载全文

作  者:Jun WU Xuemei LIU 

机构地区:[1]College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China [2]Department of Civil and Environmental Engineering, National University of Singapore, Singapore 119077, Singapore [3]School of Civil Engineering and Built Environment, Queensland University of Technology, Brisbane, QLD 4072, Australia

出  处:《Frontiers of Structural and Civil Engineering》2015年第3期323-340,共18页结构与土木工程前沿(英文版)

摘  要:This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element Both the numerical and field blast test indicated that the software LS-DYNA agrees closely with the experimental data SHS composite exhibited high resistance against blast loadingThis paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element Both the numerical and field blast test indicated that the software LS-DYNA agrees closely with the experimental data SHS composite exhibited high resistance against blast loading

关 键 词:high strength concrete (SHS) engineered cementitious composite interface blast test strain rate effect 

分 类 号:TU45[建筑科学—岩土工程] TB332[建筑科学—土工工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象