检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东师范大学地理科学学院,上海200241 [2]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101
出 处:《遥感技术与应用》2015年第5期987-995,共9页Remote Sensing Technology and Application
基 金:国家自然科学基金项目"人口空间数据获取方法及格网尺度适宜性研究"(41271173)资助
摘 要:基于土地利用数据的人口统计数据空间化方法,在处理过程中会出现同一土地利用类型下人口难以细分的情况,从而影响人口空间数据精度。引入夜间灯光信息并提出了一种基于夜间灯光强度对城镇居民地再分类的人口空间化方法,以改善人口空间数据精度。基于DMSP/OLS夜间灯光及土地利用数据,以长江中游4省为研究区进行方法试验。研究结果显示:利用夜间灯光数据对城镇居民地再分类后,各分区模型的调整R2都提高到了0.8以上,人口空间数据总体平均相对误差较重分类前降低了12.32%。说明该方法在提高传统人口数据空间化模型精度的基础上能够细化城镇居民地人口空间分布。Precious studies have approveds the advantages in remotely sensed land cover to stimulate spatial distribution of population.However,these studies also showed the shortcomings in revealing the details of population distribution within a single land-use type.This study presents a method which can improve the spatial distributing of census data:re-classification of urban residential areas.By using DMSP/OLS nightlight imagery data as an information source indicated the urbanization level,the urban residential land-use data in the middle reaches of the Yangtze River which were reclassified under the support of GIS technology.based on the population regionalization,a linear regression models were established with integrating the reclassified urban residential land-use data with the rural residential land-use data.Then the models were employed to estimate the population distribution in the middle reaches of the Yangtze River in 2010.The results showed that the urban residential land-use data reclassified by the night-time imagery offered urban population distribution with a better accuracy,with R2 of partition models raised 0.8and the overall average relative error reduced by 12.32%.Compared with the conventional statistical regression method,the modified model can improve the spatial accuracy of population data at county scale.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28