检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈金玉[1]
出 处:《福州大学学报(自然科学版)》2015年第5期594-598,共5页Journal of Fuzhou University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61272043);重庆市基础与前沿研究计划资助项目(cste2013jj B40009)
摘 要:考虑下述带位移的广义Riemann边值问题Φ+[α(t)]=G1(t)Φ-(t)+G2(t)Φ-(t)+f(t),(t∈L),边界L为简单封闭的Lyapunov曲线,并将复平面C分隔为内域D+和外域D-两部分.正位移或反位移α(t)是曲线L至它自身的同胚变换,且系数满足G1(t),G2(t),f(t),α'(t)∈Hμ(t).讨论当G1(t)±G2(t)之一为常数时,求解并给出了上述问题的封闭形式解,从而得到比前人更好的结果.最后,通过一个实例,验证了求解过程及封闭形式解的正确性.In this paper the generalized Riemann boundary value problem with shift Φ+[α( t) ] =G1(t)Φ-(t) +G2(t)Φ-(t) +f(t), (t∈L), is investigated in the class of piecewise analytic func-tions.The boundary L is a simple closed Lyapunov curve in complex plane C, let D+be the interior domain , and D-=C/D+,α( t) is a homeomorphism onto itself which preserves or changes the orien-tation of L, the coefficients G1(t), G2(t), f(t),α′(t) belong to Hμ(t).When one case of G1(t) ±G2 ( t)≡const is satisfied , the paper establishes the closed form of the solution of problem above , which is better than some past works .Finally, an example is given to verify the correctness of the solu-tion process and the closed form solution .
关 键 词:广义Riemann边值问题 Markushevich问题 位移 共轭 求解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.122.239