Responses of Soil Nematode Abundance and Diversity to Long-Term Crop Rotations in Tropical China  被引量:3

Responses of Soil Nematode Abundance and Diversity to Long-Term Crop Rotations in Tropical China

在线阅读下载全文

作  者:ZHONG Shuang ZENG Huicai JIN Zhiqiang 

机构地区:[1]Haikou Experimental Station,Chinese Academy of Tropical Agricultural Sciences [2]Hainan Key Laboratory of Banana Genetic Improvement [3]Institute of Tropical Bioscience and Biotechnology,Chinese Academy of Tropical Agricultural Sciences

出  处:《Pedosphere》2015年第6期844-852,共9页土壤圈(英文版)

基  金:supported by the National Natural Science Foundation of China (No. 41301277);the Natural Science Foundation of Hainan Province, China (No. 310073)

摘  要:A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode communities in the island. The experiment was set out as a randomized complete block design with three replications of three treatments: banana-pineapple rotation (AB), banana-papaya rotation (BB) and banana monoculture (CK) in a conventional tillage system. Soil samples were taken at depths of 0-10, 10-20 and 20-30 cm, and nematodes were extracted by a modified cotton-wool filter method and identified to the genus level. Nematode ecological indices of Shannon-Weaver diversity (Ht), dominance index (A), maturity index (MI), plant parasite index (PPI), structure index (SI), enrichment index (EI), and channel index (CI) were calculated. A total of 28 nematode genera with relative abundance over 0.1% were identified, among which Tylenchus and Paratylenchus in the AB, Thonus in the BB, Tylenchus and Helicotylenchus in the CK were the dominant genera. The rotation soils favored bacterivores, fungivores and omnivores-predators with high colonizer-persister (c-p) values. Soil food web in the rotation systems was highly structured, mature and enriched as indicated by SI, MI and EI values, respectively. Higher abundance of bacterivores and lower values of CI suggested that the soil food web was dominated by a bacterial decomposition pathway in rotation soils. Nematode diversity was much higher after a decade of rotation. Soil depth had significant effects on the abundance of soil nematodes, but only on two nematode ecological indices (λ and MI).A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode communities in the island. The experiment was set out as a randomized complete block design with three replications of three treatments: banana-pineapple rotation(AB), banana-papaya rotation(BB) and banana monoculture(CK) in a conventional tillage system. Soil samples were taken at depths of 0–10, 10–20 and 20–30 cm, and nematodes were extracted by a modified cotton-wool filter method and identified to the genus level. Nematode ecological indices of Shannon-Weaver diversity(H′), dominance index(λ), maturity index(MI), plant parasite index(PPI), structure index(SI), enrichment index(EI), and channel index(CI) were calculated. A total of 28 nematode genera with relative abundance over 0.1% were identified, among which Tylenchus and Paratylenchus in the AB, Thonus in the BB, Tylenchus and Helicotylenchus in the CK were the dominant genera. The rotation soils favored bacterivores, fungivores and omnivores-predators with high colonizer-persister(c-p) values. Soil food web in the rotation systems was highly structured, mature and enriched as indicated by SI, MI and EI values, respectively. Higher abundance of bacterivores and lower values of CI suggested that the soil food web was dominated by a bacterial decomposition pathway in rotation soils. Nematode diversity was much higher after a decade of rotation.Soil depth had significant effects on the abundance of soil nematodes, but only on two nematode ecological indices(λ and MI).

关 键 词:BANANA ecological index nematode community rotation system TAXON trophic group 

分 类 号:S344.1[农业科学—作物栽培与耕作技术] S154.386[农业科学—农艺学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象