Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China  被引量:26

Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China

在线阅读下载全文

作  者:XU Xiuli ZHANG Qi TAN Zhiqiang LI Yunliang WANG Xiaolong 

机构地区:[1]Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences [2]University of Chinese Academy of Sciences [3]Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University

出  处:《Chinese Geographical Science》2015年第6期739-756,共18页中国地理科学(英文版)

基  金:National Natural Science Foundation of China(No.41371062);Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation(No.JXS-EW-00);National Basic Research Program of China(No.2012CB417003);Science Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2012135001)

摘  要:Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetland. Poyang Lake, the largest freshwater lake in China, has been encountering dramatic changes in hydrological conditions in last decade, which greatly influenced the wetland vegetations. To explore the relationships between hydrology and vegetation distri- bution, water-table depth, soil moisture, species composition, diversity and biomass were measured at a seasonally flooded wetland section at Wucheng National Nature Reserve. Three plant communities, Artemisia capillaris, Phragmites australis and Carex cineras- cens communities, were examined which are zonally distributed from upland to lakeshore with decreasing elevation. Canonical corre- spondence analysis (CCA), spearmen correlation and logistic regression were adopted to analyze the relationships between vegetation characteristics and hydrological variables of water-table depth and soil moisture. Results show that significant hydrological gradient exist along the wetland transect. Water-table demonstrates a seasonal variation and is consistently deepest in A. capillaris community (ranging from q).5 m above ground to +10.3 m below ground), intermediate in P. australis community (-2.6 m to +7.8 m) and shallow- est in C. cinerascens community (-4.5 m to +6.1 m). Soil moisture is lowest and most variable in A. capillaris community, highest and least variable in P. australis community, and intermediate and moderate variable in C. cinerascens community. The CCA ordination indicated that variables of water-table depth and soil moisture are strongly related to community distribution, which explained 81.7% of the vegetation variations. Species diversity indices are significantly positively correlated with soil moisture and negatively correlated with moisture variability, while above- and belowground biomass are positively correlated with moisture. Above- and belowground biomass present Gaussian models along Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetland. Poyang Lake, the largest freshwater lake in China, has been encountering dramatic changes in hydrological conditions in last decade, which greatly influenced the wetland vegetations. To explore the relationships between hydrology and vegetation distribution, water-table depth, soil moisture, species composition, diversity and biomass were measured at a seasonally flooded wetland section at Wucheng National Nature Reserve. Three plant communities, Artemisia capillaris, Phragmites australis and Carex cinerascens communities, were examined which are zonally distributed from upland to lakeshore with decreasing elevation. Canonical correspondence analysis(CCA), spearmen correlation and logistic regression were adopted to analyze the relationships between vegetation characteristics and hydrological variables of water-table depth and soil moisture. Results show that significant hydrological gradient exist along the wetland transect. Water-table demonstrates a seasonal variation and is consistently deepest in A. capillaris community(ranging from –0.5 m above ground to +10.3 m below ground), intermediate in P. australis community(–2.6 m to +7.8 m) and shallowest in C. cinerascens community(–4.5 m to +6.1 m). Soil moisture is lowest and most variable in A. capillaris community, highest and least variable in P. australis community, and intermediate and moderate variable in C. cinerascens community. The CCA ordination indicated that variables of water-table depth and soil moisture are strongly related to community distribution, which explained 81.7% of the vegetation variations. Species diversity indices are significantly positively correlated with soil moisture and negatively correlated with moisture variability, while above- and belowground biomass are positively correlated with moisture. Above- and belowground biomass present Gaussian models along the gradient of average water-

关 键 词:water-table depth soil moisture species diversity BIOMASS Gaussian model Poyang Lake wetland 

分 类 号:S154.4[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象