检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳工业大学,沈阳110870 [2]中国电力科学研究院高压所,武汉430074
出 处:《高压电器》2015年第11期187-193,共7页High Voltage Apparatus
基 金:国家电网公司基础性前瞻性项目(GY71-13-012)~~
摘 要:利用振动法在线监测配电变压器绕组的状态关键在于如何从振动信号中提取有效的特征。为了更有效地监测与诊断变压器绕组的状态,搭建了某配电变压器多次短路冲击试验及负载试验时的振动信号监测平台,利用总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)对变压器绕组的振动信号进行分析并求解其能量熵值,提出一种基于EEMD能量熵的配电变压器绕组状态监测与故障诊断的方法。实验结果表明,EEMD能够有效地提取配电变压器绕组振动信号的特征,得到振动信号各频带内的能量分布状态,可准确地在线监测与诊断配电变压器绕组故障。On-line state monitoring of distribution transformer windings with the vibration method depends onextraction of effective features from the vibration signals. In order to monitor and diagnose the state of the transformerwindings more effectively, the authors built an on-line monitoring platform of vibration signals for the short-circuitimpulse test and loading test on a power transformer, analyzed the vibration signals of the transformer winding viathe ensemble empirical mode decomposition (EEMD), and obtained the energy entropy of the vibration signals.Consequently, a state monitoring and mechanical fault diagnosis method based on EEMD energy entropy wasproposed for distribution transformer windings. Experimental results show that EEMD can effectively extract thefeatures of the vibration signals of distribution transformer windings, obtain the energy distribution within eachfrequency band of the vibration signal, and help to diagnose transformer winding faults accurately.
关 键 词:变压器绕组 振动 总体平均经验模态分解(EEMD) 能量熵 状态监测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112