检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Communication Research Center,Harbin Institute of Technology
出 处:《Journal of Harbin Institute of Technology(New Series)》2015年第5期61-68,共8页哈尔滨工业大学学报(英文版)
基 金:Sponsored by the National Natural Science Foundation of China(Grant No.61071104)
摘 要:In order to estimate the traffic arrival rate and service rate parameters of primary users in cognitive radio networks,a hidden Markov model estimation algorithm( HMM-EA) is proposed,which can provide better estimation performance than the energy detection estimation algorithm( ED-EA). Firstly,spectrum usage behaviors of primary users are described by establishing a preemptive priority queue model,by which a real state transition probability matrix is derived. Secondly,cooperative detection is utilized to detect the real state of primary users and emission matrix is derived by considering both detection and false alarm probability. Then,a hidden Markov model is built based on the previous two steps,and evaluated through the forward-backward algorithm. Finally,the simulations results verify that the HMM-EA algorithm outperforms the ED-EA in terms of convergence performance,and therefore the secondary user is able to access the unused channel with the least busy probability in real time.In order to estimate the traffic arrival rate and service rate parameters of primary users in cognitive radio networks,a hidden Markov model estimation algorithm( HMM-EA) is proposed,which can provide better estimation performance than the energy detection estimation algorithm( ED-EA). Firstly,spectrum usage behaviors of primary users are described by establishing a preemptive priority queue model,by which a real state transition probability matrix is derived. Secondly,cooperative detection is utilized to detect the real state of primary users and emission matrix is derived by considering both detection and false alarm probability. Then,a hidden Markov model is built based on the previous two steps,and evaluated through the forward-backward algorithm. Finally,the simulations results verify that the HMM-EA algorithm outperforms the ED-EA in terms of convergence performance,and therefore the secondary user is able to access the unused channel with the least busy probability in real time.
关 键 词:cognitive radio hidden Markov model cooperative detection
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222