Zygotic chromosomal structural aberrations after paternal drug treatment  被引量:1

Zygotic chromosomal structural aberrations after paternal drug treatment

在线阅读下载全文

作  者:Anne Marie Downey Bernard Robaire 

机构地区:[1]Departments of Pharmacology and Therapeuticsand of Obstetrics and Gynecology, McGill University,Montreal, Quebec, Canada.

出  处:《Asian Journal of Andrology》2015年第6期939-941,共3页亚洲男性学杂志(英文版)

摘  要:In recent years, the field of male-mediated reproductive toxicology has received growing attention. It is now well-established that many drugs, chemicals, and environmental factors can harm male germ cells by inducing DNA damage. Male germ cells have extensive repair mechanisms that allow detection and repair of damaged DNA during the early phases of spermatogenesis. However, during the later phase of spermiogenesis, when the haploid spermatids undergo chromatin condensation and become transcriptionally quiescent, their ability to repair damaged DNA is lost. It is also thought that the highly compacted chromatin of the sperm can protect DNA against damage. Therefore, it is expected that late spermatids will be most susceptible to DNA damaging agents. Unrepaired or misrepaired damage in the germ cells leads to the generation of spermatozoa with DNA damage that can be transmitted to the next generation. Fortunately, the maternal DNA repair machinery is capable of recognizing and repairing, at least to some degree, damaged paternal DNA after fertilization in the zygote. Therefore, the efficiency of the maternal repair machinery will greatly influence the risk of transmitting paternal DNA damage to offspring.In recent years, the field of male-mediated reproductive toxicology has received growing attention. It is now well-established that many drugs, chemicals, and environmental factors can harm male germ cells by inducing DNA damage. Male germ cells have extensive repair mechanisms that allow detection and repair of damaged DNA during the early phases of spermatogenesis. However, during the later phase of spermiogenesis, when the haploid spermatids undergo chromatin condensation and become transcriptionally quiescent, their ability to repair damaged DNA is lost. It is also thought that the highly compacted chromatin of the sperm can protect DNA against damage. Therefore, it is expected that late spermatids will be most susceptible to DNA damaging agents. Unrepaired or misrepaired damage in the germ cells leads to the generation of spermatozoa with DNA damage that can be transmitted to the next generation. Fortunately, the maternal DNA repair machinery is capable of recognizing and repairing, at least to some degree, damaged paternal DNA after fertilization in the zygote. Therefore, the efficiency of the maternal repair machinery will greatly influence the risk of transmitting paternal DNA damage to offspring.

分 类 号:S856[农业科学—临床兽医学] Q343[农业科学—兽医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象