基于无迹卡尔曼滤波的并联型电池系统SOC估计研究  被引量:2

Research on SOC estimation of parallel-connection battery system based on unscented kalman filter

在线阅读下载全文

作  者:彭思敏[1] 窦真兰[2] 沈翠凤[1] 李家荣[1] 

机构地区:[1]盐城工学院电气工程学院,江苏盐城224051 [2]国网上海市电力公司电力科学研究院,上海市200437

出  处:《中国农机化学报》2015年第6期291-295,共5页Journal of Chinese Agricultural Mechanization

基  金:国家自然科学青年基金(51507150);江苏省自然科学基金项目(BK20150430);江苏省高校自然科学研究面上项目(15KJB480004);江苏省农业科技自主创新基金(CX(13)3058);盐城工学院人才引进项目(KJC2014008)

摘  要:为准确估计由多个电池单体构成的并联型电池系统的荷电状态(SOC),以SOC与电池极化电压为系统状态变量,提出基于无迹卡尔曼滤波法的并联型电池系统荷电状态估计算法,建立电池系统SOC估计平台,在恒流和脉冲两种工况下,通过UKF算法与EKF算法的对比分析,证明了采用UKF算法进行并联型电池系统SOC估计的结果更准确、鲁棒性更强。To accurately estimate the state of charge(SOC)of parallel-connection battery system(PBS)which consists of many cells,the method based on unscented Kalman filter(UKF)was presented.The polarization voltage and SOC of PBS were selected as system state variables.The simulation platform was built to estimate SOC of PBS,and the effectiveness and robustness of the method were verified by the comparison between UKF and EKF under constant current and pulse current conditions.

关 键 词:并联型电池系统 荷电状态估计 无迹卡尔曼滤波法 

分 类 号:TM315[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象