检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张祥德[1] 朱和贵[1] 李倩颖[1] 唐青松[1]
出 处:《东北大学学报(自然科学版)》2015年第11期1526-1529,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(61202085);辽宁省自然科学基金资助项目(201202074);中央高校基本科研业务费专项资金资助项目(N140503004)
摘 要:针对人脸识别中单一特征难以取得理想效果的问题,提出了基于MBC和POEM特征融合的人脸识别方法.首先,在归一化的人脸图像上提取MBC编码图和POEM编码图,在每个编码图块上生成特征向量,应用线性判别分析对特征向量进行低维映射,并对其进行赋权相加得到最终相似度.所提算法在FERET的Dup1,Dup2,Fb和Fc 4个测试库上取得了较高的识别率,分别为93.77%,90.60%,99.58%和99.49%;在误识率为0.1%的条件下,在4个测试库上的认证率分别为95.70%,92.31%,99.75%和100%,进一步验证了该方法的有效性.Due to the representation difficulty of a face image by a single type feature used in face recognition,a MBC feature and POEMfeature-based face recognition scheme was proposed.Firstly,MBC and POEMcoding patterns were extracted from normalized face images. Secondly,feature vector of every block was generated by dividing the MBC and POEMcoding patterns into blocks. Finally,the classification capacity of features was enhanced by using weighted piecewise LDA algorithm. Recognition and verification test were carried out using the proposed algorithm on Dup1,Dup2,Fb and Fc,respectively,which were the four subsets of FERET. The recognition rates were 93. 77%,90. 60%,99. 58%,and 99. 49%,respectively,and the verification rates( false accepted rate is 0. 1%) were 95. 70%,92. 31%,99. 75%,and 100%,respectively. All these results indicated the effectiveness of the proposed algorithm.
关 键 词:人脸识别 MBC特征 POEM特征 特征融合 赋权分段线性判别分析
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15