检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张绘芳[1] 高亚琪[1] 朱雅丽[1] 地力夏提.包尔汉 李霞[2]
机构地区:[1]新疆林业科学院现代林业研究所,新疆乌鲁木齐830000 [2]新疆农业大学草业与环境学院,新疆乌鲁木齐830052
出 处:《西北林学院学报》2015年第6期52-58,共7页Journal of Northwest Forestry University
基 金:新疆林业厅新疆林业数表构建项目(新林计字【2014】835号);新疆维吾尔自治区公益性科研院所基本科研业务经费资助项目(XMBM000001953)
摘 要:基于80株样木的实测数据,运用相关分析和回归分析方法构建了雪岭杉的地上部组织、地下部和各组分器官的生物量估测模型,并根据评价指标对比分析各种模型。结果表明:地上各部分生物量一元模型精度除树叶为77%,其他均在90%以上,可以满足大尺度森林生物量估计;地上各生物量二元模型拟合效果要优于一元模型,但是不同组分生物量模型适合的因子组合不同,地上生物量和树干生物量模型W=aDb Hc相对最优,预估精度97.38%和97.26%,树枝、树叶生物量模型W=a(D3/H)b最优,预估精度93.96%和90.37%;地下生物量模型以根茎比方程建立的一元模型最优,预估精度89.01%。建立的地上及各组分生物量模型和地下生物量模型可用于新疆天山山区雪岭杉生物量估计。Based on the measured data of 80 sample trees, models that were used to estimate the biomass of the different parts of Picea schrenkiana were established and compared according to the evaluation index a-nalysis. The results showed that the precisions of the single-variable models for aboveground biomass esti- mation were over 900//00 except for that used for leaf biomass estimation (with a precision of 77%), indicating that these models could be applied in large-scale-biomass estimation Binary models for aboveground bi- omass estimation were superior to single-variable models, however, optimum factor combinations were dif- ferent among the models. W= aDbHc was the best model for aboveground and trunk biomass estimation with estimation precisions of 97. 38% and 97.26%, respectively. For branch and leaf biomass, the best model was W= (Da/H)b, with estimation precisions of 93.96% and 90.37%, respectively. For the esti- mation of underground biomass, the single-variable model based on root-shoot ratio equation was the best, with a precision of 89.01%. The models established could be used for the biomass estimation of P. schren- kiana in Tianshan Mountain in Xinjiang.
分 类 号:S791.189[农业科学—林木遗传育种]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80