Enhancing Telco Service Quality with Big Data Enabled Churn Analysis: Infrastructure, Model, and Deployment  被引量:1

Enhancing Telco Service Quality with Big Data Enabled Churn Analysis: Infrastructure, Model, and Deployment

在线阅读下载全文

作  者:李慧 吴迪 李高翔 柯毅豪 刘文杰 郑元欢 林小拉 

机构地区:[1]Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China

出  处:《Journal of Computer Science & Technology》2015年第6期1201-1214,共14页计算机科学技术学报(英文版)

基  金:This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61272397, 61472454, and 61572538, and the Guangdong Natural Science Funds for Distinguished Young Scholar under Grant No. S20120011187.

摘  要:The penetration of mobile phones is nearly saturated in both developing and developed regions. In such a circumstance, how to prevent subscriber churn has become an important issue for today's telecom operators, as the cost to acquire a new subscriber is much higher than that to retain an existing subscriber. In this paper, we propose to leverage the power of big data to mitigate the problem of subscriber churn and enhance the service quality of telecom operators. As the information hub, telecom operators have accumulated a huge volume of valuable data on subscriber behaviors, service usage, and network operations. To enable efficient big data processing, we first build a dedicated distributed cloud infrastructure that integrates both online and offline processing capabilities. Second, we develop a complete churn analysis model based on deep data mining techniques, and utilize inter-subscriber influence to improve prediction accuracy. Finally, we use real datasets obtained from a large telecom operator in China to verify the accuracy of our churn analysis models. The dataset contains the information of over 3.5 million subscribers, which generate over 600 million call detail records (CDRs) per month. The empirical results demonstrate that our proposed method can achieve around 90% accuracy for T + 1 testing periods and identify subscribers with high negative influence successfully.The penetration of mobile phones is nearly saturated in both developing and developed regions. In such a circumstance, how to prevent subscriber churn has become an important issue for today's telecom operators, as the cost to acquire a new subscriber is much higher than that to retain an existing subscriber. In this paper, we propose to leverage the power of big data to mitigate the problem of subscriber churn and enhance the service quality of telecom operators. As the information hub, telecom operators have accumulated a huge volume of valuable data on subscriber behaviors, service usage, and network operations. To enable efficient big data processing, we first build a dedicated distributed cloud infrastructure that integrates both online and offline processing capabilities. Second, we develop a complete churn analysis model based on deep data mining techniques, and utilize inter-subscriber influence to improve prediction accuracy. Finally, we use real datasets obtained from a large telecom operator in China to verify the accuracy of our churn analysis models. The dataset contains the information of over 3.5 million subscribers, which generate over 600 million call detail records (CDRs) per month. The empirical results demonstrate that our proposed method can achieve around 90% accuracy for T + 1 testing periods and identify subscribers with high negative influence successfully.

关 键 词:subscriber churn big data cloud infrastructure telco service quality 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TN915.07[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象