检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院声学研究所噪声与振动重点实验室,北京100190
出 处:《网络新媒体技术》2015年第6期7-13,64,共8页Network New Media Technology
摘 要:论文介绍了一种基于近场噪声监测的远场声压预估方法,讨论了影响该方法预测鲁棒性的主要因素——条件数的影响,并且提出了基于奇异值分解(SVD)的改进计算方法。在此理论基础上,本文开发了一个分布式计算的远场声压预估系统:首先采用Hadoop Streaming工具与python结合的方式,建立了基于MapReduce模型的分布式计算平台;然后在该平台上实现了这种改进的远场声压预估算法,进而实现了分布式计算和科学计算的有机结合;最后搭建了实验所需环境,并在该环境下对预估的结果进行了分析。This paper introduces a far- field sound pressure prediction method based on monitoring near- field noise and discusses the main factor that affects the robustness of the prediction: Condition number. Accordingly an improved method involved with singular value decomposition( SVD) is proposed. Furthermore a distributed computing sound pressure prediction system has been developed: firstly,a distributed computing platform of MapReduce model is founded with the tool of Hadoop streaming combined with python; then the improved method of far- field sound pressure prediction is realized in this platform which combines distributed computing and scientific computing. Finally,the result of the prediction in our experimental environment has been analyzed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.23