上市企业社交媒体信息发布内容与其股票交易量的关系研究  

Relationship Between the Content of Listed Enterprises' Information Released on Social Media and Stock Trading Volume

在线阅读下载全文

作  者:张栋凯 齐佳音[1] 

机构地区:[1]北京邮电大学经济管理学院,北京100876

出  处:《北京邮电大学学报(社会科学版)》2015年第5期12-22,共11页Journal of Beijing University of Posts and Telecommunications(Social Sciences Edition)

基  金:国家重点基础研究发展计划(973计划)重大课题项目(2013CB329604);国家自然科学基金重点项目(71231002);教育部博士点基金项目(20120005110015)

摘  要:对142家标普500成分企业在Twitter上发布的信息进行语义分析,将其分为企业形象提升类信息与非形象提升类信息,实证分析了两类信息与企业股票交易量之间的相关关系,并检验了两类信息之间的交互作用,研究发现:企业形象提升类信息有效地提高了投资者的感知价值,降低了信息不对称程度,与股票交易量之间呈显著的正相关关系;非企业形象提升类信息多为中立信息,过多地占用了投资者处理企业形象提升类信息的注意力资源,不利于降低信息不对称程度,显著地削弱了企业形象提升类信息与股票交易量之间的正相关关系,并且与股票交易量之间呈显著的负相关关系。Semantic analysis is conducted about the information released on Twitter from the 142 enterprises listed in SP 500 enterprises. The information is categorized as enterprises' image enhancing information and nonimage enhancing information,and the relationship between these two types of information and stock trading volume is empirically studied,and the interactive effects of the information are tested. It is found that,the image enhancing information can effectively improve the perceived value of investors and reduce the degree of information asymmetry,and has the significantly positive correlation with the stock trading volume. Meanwhile,most non-image enhancing information is neutral,which distracts investors from dealing with the image enhancing information and intensifies the degree of information asymmetry; and have the negative correlation with the stock trading volume. The non-image enhancing information weakens the positive correlation between the image enhancing information and the stock trading volume. This study provides a new way to explore the business value of enterprises' social media.

关 键 词:股票交易量 社交媒体 信息内容 形象提升类信息 非形象提升类信息 

分 类 号:F831.5[经济管理—金融学] G206.3[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象