基于IPSO的PID参数自整定在流浆箱总压控制中的应用  被引量:5

Application of the PID Parameters Self-tuning Based on IPSO in Headbox Total Pressure Control

在线阅读下载全文

作  者:陈帅帅[1] 赵倩梅 熊智新[1] 胡慕伊[1] 

机构地区:[1]南京林业大学江苏省制浆造纸科学与技术重点实验室,江苏南京210037

出  处:《中国造纸》2015年第11期37-41,共5页China Pulp & Paper

摘  要:稀释水水力式流浆箱的总压控制直接关系到纸张质量的好坏,而传统的PID整定方法精度较低,使用标准粒子群优化算法可以提高精度但是算法敛速度较慢。针对这些问题,采用改进的粒子群优化算法来自整定PID参数,通过使用非线性递减惯性系数和动态加速因子策略来提高算法的寻优速度及精度。仿真结果表明,用改进的粒子群优化算法整定后的流浆箱总压控制PID有更好的响应速度和鲁棒性。The control of dilution hydraulic headbox total pressure is directly related to the paper's quality. However, the accuracy of tradi- tional PID turning is low, while the standard particle swarm optimization algorithm(PSO) could improve the accuracy but it had a disadvan- tage of slow convergence speed. Aiming at those problems, an improved particle swarm optimization algorithm(IPSO) was adopted to self-tune PID parameters in this paper. The speed and accuracy of optimization were improved by using the nonlinear decreasing inertia coefficient and dynamic acceleration factors. Simulation results showed that the headbox total pressure PID controller turned by IPSO algorithm had a better response speed and robustness.

关 键 词:流浆箱总压 PID自整定 改进粒子群优化算法 

分 类 号:TS736[轻工技术与工程—制浆造纸工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象