Morphology characterization of periclase–hercynite refractories by reaction sintering  被引量:5

Morphology characterization of periclase–hercynite refractories by reaction sintering

在线阅读下载全文

作  者:Peng Jiang Jun-hong Chen Ming-wei Yan Bin Li Jin-dong Su Xin-mei Hou 

机构地区:[1]School of Materials Science and Engineering, University of Science and Technology Beijing [2]Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing

出  处:《International Journal of Minerals,Metallurgy and Materials》2015年第11期1219-1224,共6页矿物冶金与材料学报(英文版)

基  金:the National Nature Science Foundation of China (No. 51172021);the National Science-Technology Support Plan Projects of China (No. 2013BAF09B01);the Fundamental Research Funds for the Central Universities (No. FRF-SD-13-006A)

摘  要:A periclase?hercynite brick was prepared via reaction sintering at 1600℃for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase-hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe^2+, Fe^3+ and Al^3+ ions in hercynite crystals migrate and react with periclase to form(Mg1-xFex)(Fe2-yAly)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg^2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg^2+ migration leads to the formation of(Mg1-uFeu)(Fe2-vAlv)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure.A periclase?hercynite brick was prepared via reaction sintering at 1600℃for 6 h in air using magnesia and reaction-sintered hercynite as raw materials. The microstructure development of the periclase-hercynite brick during sintering was investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. The results show that during sintering, Fe^2+, Fe^3+ and Al^3+ ions in hercynite crystals migrate and react with periclase to form(Mg1-xFex)(Fe2-yAly)O4 spinel with a high Fe/Al ratio. Meanwhile, Mg^2+ in periclase crystals migrates into hercynite crystals and occupies the oxygen tetrahedron vacancies. This Mg^2+ migration leads to the formation of(Mg1-uFeu)(Fe2-vAlv)O4 spinel with a lower Fe/Al ratio and results in Al3+ remaining in hercynite crystals. Cation diffusion between periclase and hercynite crystals promotes the sintering process and results in the formation of a microporous structure.

关 键 词:refractories periclase hercynite sintering morphology diffusion 

分 类 号:TQ175.1[化学工程—硅酸盐工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象