一种Fibonacci优化理论的改进ELM分类方法  被引量:4

ELM Algorithm Based on Fibonacci Method Optimization Algorithm

在线阅读下载全文

作  者:陆慧娟[1] 魏莎莎[1] 宋夫华[2] 高波涌[1] 

机构地区:[1]中国计量学院信息工程学院,杭州310018 [2]中国计量学院机电工程学院,杭州310018

出  处:《小型微型计算机系统》2015年第12期2745-2748,共4页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61272315;60842009)资助;浙江省自然科学基金项目(Y1110342;LQ13F020014)资助;浙江省科技厅国际合作项目(2012C24030)资助

摘  要:作为一种单隐层前馈神经网络,极限学习机(Extreme Learning Machine:ELM)相比传统神经网络算法具有模型简单、泛化能力好、学习速度快等优点,在大规模基因芯片技术的应用中为基因表达数据的肿瘤诊断提供了新的途径,是交叉科学领域新的突破.针对极限学习机随机确定权值,以及其算法存在大量隐层的神经元个数导致算法性能不稳定、分类精度不理想等问题,采用基于优化理论中的Fibonacci序列对ELM隐层节点与偏置进行改进,提出了一种基于Fibonacci优化理论的ELM分类方法(F-ELM).将改进分类方法应用到Hepatitis和Bridges数据集上,实验结果表明,基于Fibonacci优化理论的ELM分类方法性能得到提升,并相对传统的SVM算法、BP和Bayes算法的分类精度较高.As a single-hidden layer feedforward neural networks, Extreme Learning Machine has the advantages of simple model, good generalization ability, fast learning speed comparing with the traditional neural network algorithm. In large-scale applications of gene chip technology in gene expression data it provides a new way for tumor diagnosis and is a new breakthrough of interdisciplinary field. With the problem of random weights and large numbers of neurons in hidden layer which lead to the unstable performance and unideal classification accuracy in ELM,the paper proposes an improved ELM classification method with the theory of Fibonacci optimization ( F-ELM ). The algorithm focus on the improvement on the optimization of Fibonacci sequence theory which makes the improvement to the ELM hidden layer nodes and bias. The improved classification method is applied to the Hepatitis and Bridges data set. The ex- perimental results shows that the Fibonacci performance optimization for ELM classification method based on the theory of improved has higher classification accuracy compared to the traditional SVM algorithm, BP algorithm and Bayes algorithm.

关 键 词:交叉科学 斐波那契方法 极限学习机 隐层节点优化 分类 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象