基于微分熵与RQA的电能质量扰动分析  被引量:5

Power quality disturbance analysis based on differential entropy and recurrence quantification analysis

在线阅读下载全文

作  者:张淑清[1] 李莎莎[1] 张立国[1] 张航飞[1] 乔永静[1] 徐剑涛[1] 

机构地区:[1]燕山大学电气工程学院,秦皇岛066004

出  处:《仪器仪表学报》2015年第11期2411-2419,共9页Chinese Journal of Scientific Instrument

基  金:国家自然科学基金(61077071;51475405);河北省自然科学基金(F2015203413);河北省高等学校科学技术研究重点项目(ZD2014100)资助

摘  要:基于非线性混沌和相空间重构理论,将电能质量扰动信号序列重构到高维相空间,进行递归图(RP)分析。采用微分熵法对电能质量信号进行相空间重构,避免分别求取嵌入维数和延迟时间的不一致性;引入递归定量分析(RQA)进行扰动的定量分析,克服传统特征提取方法对过程平稳的严格要求。利用能够表征信号发散程度的RQA参数-确定率(DET)和分层率(LAM)组成电能扰动信号识别的特征向量,根据不同电能质量扰动信号各自的分布情况,来区分不同的电能质量扰动信号。通过对6种电能质量扰动信号进行实验分析,结果表明:该方法不仅能够很直观地识别电能质量扰动信号,还能利用RQA的特征量对信号进行具体的定量分析,为电能质量扰动分析提供了高效、直观的方法。In the light of the non-liner theory of chaos and phase space reconstruction,the signal sequence of power quality disturbance is reconstructed into high dimensional phase space,so as to be analyzed by recursive figure( recurrence plot,PR). The differential entropy method was introduced to reconstruct power quality signal,avoiding the inconsistency caused by obtaining embedding dimension and delay time separately. The recurrence quantification analysis method( recurrence quantification analysis,RQA) was used to quantitatively analyze perturbing signal,so as to overcome the strict requirements on stationary processes by traditional feature extraction methods. The feature vectors of power disturbance signal were consisted by determined rate( determinism,DET) and hierarchical rate( laminarity,LAM),which represented the degree of signal divergence. Different disturbance signals were distinguished depending on the distribution of respective feature vector. Experiments on 6 power quality disturbance signals showed that the presented method could recognize disturbance signal intuitively,as well as quantitatively analyze signals by the RQA feature amount,providing an efficient and intuitive way for the power quality disturbance analysis.

关 键 词:电能质量扰动 微分熵法 递归定量分析 确定率 分层率 

分 类 号:TM74[电气工程—电力系统及自动化] TH183.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象