检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程》2015年第10期129-135,共7页Systems Engineering
基 金:国家自然科学基金资助项目(71071123;61221063);长江学者和创新团队发展计划项目(IRT1173)
摘 要:针对服务点接收能力和道路通行能力受限情况下,如何将多个定点尽快聚集到已有服务点的应急聚集问题,建立相应模型;并针对2个应急服务点,在直线情形假设下,设计了基于"二分法"的应急聚集策略,该策略能使所有需要聚集的点在最短时间内聚集到各服务点;在此基础上,为一般直线上k个应急服务点的应急聚集问题设计了求解算法,一般算法的时间复杂性为O(kn+(logn)log(k+1)),其中n为需要聚集点个数。Taking into account the capacity limitation of emergency service facilities and road, this paper studies how to aggregate fixed points to service points as soon as possible to meet the need in some emergency situations . we first design a .schedule algorithm for two facility on a line using the method of binary search, and then design an initial schedule algorithm for the linear graph with k facilities. The proposed algorithm ensures that the aggregation process can be completed as early as possible. And we prove that the time complexity of the proposed algorithm is O(kn+ (logn)log(k+1) where n and k are the number of fixed points and service points on the line, respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.97