检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西大学土木建筑工程学院,广西南宁530004 [2]广西大学工程防灾与结构安全教育部重点实验室,广西南宁530004
出 处:《建筑结构学报》2015年第12期106-115,共10页Journal of Building Structures
基 金:国家自然科学基金项目(51268004;51578163)
摘 要:为研究高温后型钢高强混凝土界面黏结性能,以混凝土强度、历经最高温度、锚固长度为变化参数,设计并完成了17个型钢高强混凝土试件的高温后静力推出试验,获取了各试件的荷载-滑移全过程曲线及特征点参数,分析了各变化参数对极限黏结强度和残余黏结强度的影响;基于试验结果,提出了高温后型钢高强混凝土极限黏结强度和残余黏结强度计算公式,研究了高温对型钢高强混凝土界面黏结失效的影响。研究结果表明:加载端和自由端的荷载-滑移曲线具有相似的形状,加载端较自由端先出现滑移;随着温度升高,型钢高强混凝土的极限和残余黏结强度均呈先下降后有所恢复的过程;试件的黏结强度与混凝土强度成正比关系;锚固长度对常温和高温下的黏结强度影响不同,常温时两者成反比,而高温时成正比;试件的弹性黏结剪切刚度随温度升高呈先减小后小幅上升之势,温度低的试件,其黏结损伤发展较早,且较为迅速,高温试件黏结损伤发展较迟且发展较缓;界面黏结耗能能力随历经最高温度的增加而增强。In order to study the bond-slip behavior between shape steel and high strength concrete after high temperature,a total of 17 steel reinforced high strength concrete( SRHC) specimens were designed for push out test.Concrete strength,constant temperature and anchorage length were considered to research their influences on ultimate bond strength and residual bond strength of SRHC. The load-slip curves with the characteristic point parameters were gotten,and the formulas to calculate the ultimate bond strength and the residual bond strength were gained by regression using the results of this experiment and previous studies. The influence of constant temperature on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at the loading ends and free ends are similar,and the loading ends slip earlier than the free ends. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the constant temperature increasing. The bond strength is proportional to the concrete strength,and the bond strength is proportional to the anchoring length when the constant temperature is low,while the opposite situation occurs when the constant temperature is high. The interface elastic shear strength decreases first and then recovers partly with the increasing of constant temperature. The bond damage of specimens with lower constant temperature developes earlier and faster than the specimens with higher constant temperature. The energy dissipation capacity of the bonding interface is proportional to the constant temperature.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222