基于时频分析的高频地波雷达目标检测算法  被引量:7

A target detection algorithm of HFSWR based on time-frequency analysis

在线阅读下载全文

作  者:李庆忠[1] 李瑞芹[1] 黎明[1] 牛炯[1] 刘小彤[1] 

机构地区:[1]中国海洋大学工程学院山东省海洋工程重点实验室

出  处:《电波科学学报》2015年第5期943-950,共8页Chinese Journal of Radio Science

基  金:国家自然科学基金(61132005);国家海洋局公益性项目(2015418002)

摘  要:为提高海事监测中高频地波雷达(High Frequency Surface Wave Radar,HFSWR)对运动目标的检测准确率,提出了一种基于频谱细化和小波尺度谱重排时频分析的运动目标检测算法.对HFSWR的接收信号进行频率细化处理以提高后续时频分析的频率分辨率;然后,进行基于Morlet小波的时频分析以提取目标的时频分布特征,为提高时频分布的集中性和抑制交叉项干扰,对小波尺度谱进行重排;根据得到的时频分布特征实现可疑目标区的精确检测.实验结果表明:该算法能有效检测多普勒频率相差很小的运动目标以及海杂波附近的运动目标,可用于对常规目标检测算法无法判定的可疑目标区域进行精细、准确的目标检测与分析.To improve the detection accuracy of moving targets for high frequency surface wave radar(HFSWR)based marine surveillances,a target detection algorithm based on spectrum zoom and reassigned wavelet scalogram time-frequency analysis is presented in this paper.Firstly,the received signal of HFSWR is processed by the spectrum zoom technique to improve the frequency resolution for the subsequent timefrequency analysis.Then the Morlet wavelet based time-frequency analysis method is used to extract the distribution features of targets in the time-frequency plane.Moreover,in order to improve the time-frequency concentration and suppress cross term interference,the wavelet scalogram is reassigned.Finally,the suspected target area is detected accurately from the obtained time-frequency distribution map.The experimental results show that the proposed algorithm can not only effectively detect moving objects with very small differences among their Doppler frequencies,but also extract objects with Doppler frequencies near the sea clutter,thereby providing a fine and accurate dete-cting and analyzing algorithm to some suspect object areas which are not identified by the conventional target detection algorithms.

关 键 词:HFSWR 时频分析 频谱细化 小波尺度谱重排 Morlet小波变换 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象