基于不确定性测度与支持度的测试性验前信息融合方法  被引量:3

Testability prior information fusion method based on uncertainty measure and supporting degree

在线阅读下载全文

作  者:张西山[1] 黄考利[2] 闫鹏程[2] 连光耀[2] 李志宇[3] 

机构地区:[1]军械工程学院四系 [2]中国人民解放军总装备部军械技术研究所一室 [3]中国人民解放军66010部队

出  处:《航空动力学报》2015年第11期2779-2786,共8页Journal of Aerospace Power

基  金:预先研究科研项目(51327030104)

摘  要:针对目前验前信息融合方法存在主观性和单一性的缺陷,引入验前分布的不确定性测度和支持度,提出了基于不确定性测度与支持度相结合的验前信息加权融合方法.首先,利用β分布对测试性验前信息的不确定性进行描述,运用不同的验前信息确定验前分布超参数;然后,引入不确定性测度和支持度作为验前信息加权因子,设计了相应的融合算法;最后利用混合验前分布,结合测试性现场试验数据,计算了Bayes融合评估的验后结果.该方法不仅考虑了验前分布本身对测试性参数的真实情况描述的接近程度,还考虑了不同来源的验前信息之间的支持程度.实例分析表明,在同一置信水平下,基于该方法的测试性评估置信下限相对于传统方法的测试性评估置信下限大约提高了0.7%.To overcome the shortcoming of subjectivity and unicity in those fusion meth- ods, the uncertainty measure and supporting degree of prior distribution was introduced; and the prior information weighting fusion was proposed on the basis of the uncertainty measure combined with the supporting degree. First, the uncertainty of testability prior information was described using β distribution and the prior distribution hyper-parameter was determined by different prior information. Then, the uncertainty measure and supporting degree was proposed as the weight coefficient of prior information, and the corresponding fusion algo- rithm was designed. Finally, using the mixed prior distribution and combining with the test- ability field test data, the posterior results of Bayes fusion evaluation were caculated. This method considered both the proximity of the measure parameter to the real situation, and al- so the level of supporting degree between different prior information. The example shows that the lower limit of confidence estimation based on the proposed method increases O. 7 % than the traditional method at the same confidence.

关 键 词:测试性 验前信息 不确定性测度 支持度 信息融合 

分 类 号:V23[航空宇航科学与技术—航空宇航推进理论与工程] TH114.3[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象