检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴伟[1] 安淑一[2] 郭军巧[2] 关鹏[1] 任仰武[1] 夏玲姿 周宝森[1]
机构地区:[1]中国医科大学公共卫生学院流行病学教研室,沈阳110122 [2]辽宁省疾病预防控制中心
出 处:《中华流行病学杂志》2015年第12期1394-1396,共3页Chinese Journal of Epidemiology
基 金:国家自然科学基金(81202254,30771860)
摘 要:目的 探讨非线性自回归(NAR)神经网络拟合及预测我国HFRS流行趋势的应用.方法 使用2004-2013年全国HFRS月报告发病数序列建立ARIMA模型和NAR神经网络模型,预测2014年HFRS月发病数,并比较两模型的拟合和预测效果.结果 对于拟合集,ARIMA模型的平均绝对误差(MAE)、均方误差平方根(RMSE)和平均绝对误差百分比(MAPE)分别为148.058、272.077和12.678%,NAR神经网络分别为119.436、186.671和11.778%;对于预测集,ARIMA模型的MAE、RMSE和MAPE分别为189.088、221.133和21.296%,NAR神经网络分别为119.733、151.329和11.431%.结论 NAR神经网络对于全国HFRS流行趋势拟合及预测效果优于传统的ARIMA模型,具有良好推广应用价值.Objective To explore the prospect of nonlinear autoregressive neural network in fitting and predicting the incidence tendency of hemorrhagic fever with renal syndrome (HFRS),in the mainland of China.Methods Monthly reported case series of HFRS in China from 2004 to 2013 were used to build both ARIMA and NAR neural network models,in order to predict the monthly incidence of HFRS in China in 2014.Fitness and prediction on the effects of these two models were compared.Results For the Fitting dataset,MAE,RMSE and MAPE of the ARIMA model were 148.058,272.077 and 12.678% respectively,while the MAE,RMSE and MAPE of NAR neural network appeared as 119.436,186.671 and 11.778% respectively.For the Predicting dataset,MAE,RMSE and MAPE of the ARIMA model appeared as 189.088,221.133 and 21.296%,while the MAE,RMSE and MAPE of the NAR neural network as 119.733,151.329 and 11.431% respectively.Conclusion The NAR neural network showed better effects in fitting and predicting the incidence tendency of HFRS than using the traditional ARIMA model,in China.NAR neural network seemed to have strong application value in the prevention and control of HFRS.
关 键 词:肾综合征出血热 非线性自回归神经网络 预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229